|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
-
- class OpNetWrapper(nn.Cell):
- def __init__(self, op):
- super(OpNetWrapper, self).__init__()
- self.op = op
-
- def construct(self, *inputs):
- return self.op(*inputs)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case1_basic_func():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
- params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [0, 3]
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case2_indices_to_matrix():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[1], [0]]), mindspore.int32)
- params = Tensor(np.array([[0, 1], [2, 3]]), mindspore.float32)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[2, 3], [0, 1]]
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case3_indices_to_3d_tensor():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[1]]), mindspore.int32) # (1, 1)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[[4, 5], [6, 7]]] # (1, 2, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case4():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[0, 1], [1, 0]]), mindspore.int32) # (2, 2)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[2, 3], [4, 5]] # (2, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case5():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[0, 0, 1], [1, 0, 1]]), mindspore.int32) # (2, 3)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [1, 5] # (2,)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case6():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[[0, 0]], [[0, 1]]]), mindspore.int32) # (2, 1, 2)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[[0, 1]], [[2, 3]]] # (2, 1, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case7():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[[1]], [[0]]]), mindspore.int32) # (2, 1, 1)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[[[4, 5], [6, 7]]], [[[0, 1], [2, 3]]]] # (2, 1, 2, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case8():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[[0, 1], [1, 0]], [[0, 0], [1, 1]]]), mindspore.int32) # (2, 2, 2)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.float32) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[[2, 3], [4, 5]], [[0, 1], [6, 7]]] # (2, 2, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_case9():
- op = P.GatherNd()
- op_wrapper = OpNetWrapper(op)
-
- indices = Tensor(np.array([[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]), mindspore.int32) # (2, 2, 3)
- params = Tensor(np.array([[[0, 1], [2, 3]],
- [[4, 5], [6, 7]]]), mindspore.int64) # (2, 2, 2)
- outputs = op_wrapper(params, indices)
- print(outputs)
- expected = [[1, 5], [3, 6]] # (2, 2, 2)
- assert np.allclose(outputs.asnumpy(), np.array(expected))
-
-
- if __name__ == '__main__':
- test_case1_basic_func()
- test_case2_indices_to_matrix()
- test_case3_indices_to_3d_tensor()
- test_case4()
- test_case5()
- test_case6()
- test_case7()
- test_case8()
- test_case9()
|