|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- from mindspore import Tensor
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.ops import composite as C
- from mindspore.common.initializer import initializer
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class NetDot(nn.Cell):
- def construct(self, x, y):
- return C.dot(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_001():
- x1_tensor = Tensor(np.array([[1., 2.], [4., 5.]]).astype(np.float32))
- x2_tensor = Tensor(np.array([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], \
- [[9., 10.], [11., 12.]]]).astype(np.float32))
-
- network = NetDot()
- ms_result_np = network(x1_tensor, x2_tensor)
- expect_result = np.array([[[7., 10.], [19., 22.], [31., 34.]], \
- [[19., 28.], [55., 64.], [91., 100.]]]).astype(np.float32)
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_002():
- x1_tensor = Tensor(np.array([[1., 2.], [4., 5.]]).astype(np.float32))
- x2_tensor = Tensor(np.array([[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]]).astype(np.float32))
-
- network = NetDot()
- ms_result_np = network(x1_tensor, x2_tensor)
- expect_result = np.array([[[9., 12., 15.], [27., 30., 33.]], [[24., 33., 42.], [78., 87., 96.]]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_003():
- x1_tensor = initializer(Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float32)), [2, 3, 4])
- x2_tensor = initializer(Tensor(np.arange(1 * 5 * 4 * 2).reshape(1, 5, 4, 2).astype(np.float32)), [1, 5, 4, 2])
-
- network = NetDot()
- ms_result_np = network(x1_tensor, x2_tensor)
- expect_result = np.array([[[[[28., 34.],
- [76., 82.],
- [124., 130.],
- [172., 178.],
- [220., 226.]]],
- [[[76., 98.],
- [252., 274.],
- [428., 450.],
- [604., 626.],
- [780., 802.]]],
- [[[124., 162.],
- [428., 466.],
- [732., 770.],
- [1036., 1074.],
- [1340., 1378.]]]],
- [[[[172., 226.],
- [604., 658.],
- [1036., 1090.],
- [1468., 1522.],
- [1900., 1954.]]],
- [[[220., 290.],
- [780., 850.],
- [1340., 1410.],
- [1900., 1970.],
- [2460., 2530.]]],
- [[[268., 354.],
- [956., 1042.],
- [1644., 1730.],
- [2332., 2418.],
- [3020., 3106.]]]]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_004():
- x1_tensor = initializer(Tensor(np.arange(3 * 4).reshape(3, 4).astype(np.float32)), [3, 4])
- x2_tensor = initializer(Tensor(np.arange(4 * 5).reshape(4, 5).astype(np.float32)), [4, 5])
-
- network = NetDot()
- ms_result_np = network(x1_tensor, x2_tensor)
- expect_result = np.array([[70., 76., 82., 88., 94.],
- [190., 212., 234., 256., 278.],
- [310., 348., 386., 424., 462.]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_005():
- x1_tensor = initializer(Tensor(np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float32)), [2, 3, 4])
- x2_tensor = initializer(Tensor(np.arange(4 * 5).reshape(4, 5).astype(np.float32)), [4, 5])
-
- network = NetDot()
- ms_result_np = network(x1_tensor, x2_tensor)
- expect_result = np.array([[[70., 76., 82., 88., 94.],
- [190., 212., 234., 256., 278.],
- [310., 348., 386., 424., 462.]],
- [[430., 484., 538., 592., 646.],
- [550., 620., 690., 760., 830.],
- [670., 756., 842., 928., 1014.]]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_006():
- x1_tensor = initializer(Tensor(np.arange(4).reshape(4).astype(np.float32)), [4])
- x2_tensor = initializer(Tensor(np.arange(2 * 4 * 5).reshape(2, 4, 5).astype(np.float32)), [2, 4, 5])
-
- network = NetDot()
- try:
- network(x1_tensor, x2_tensor)
- except ValueError as e:
- assert ValueError == type(e)
-
-
- def test_dot_007():
- x1_tensor = initializer(Tensor(np.arange(4).reshape(4).astype(np.float32)), [4])
- x2_tensor = initializer(Tensor(np.arange(4 * 4).reshape(4, 4).astype(np.float32)), [4, 4])
-
- network = NetDot()
- try:
- network(x2_tensor, x1_tensor)
- except ValueError as e:
- assert ValueError == type(e)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_008():
- x1_tensor = Tensor(np.array([]).astype(np.float32))
- x2_tensor = Tensor(np.array([[[1., 2.], [3., 4.]],
- [[5., 6.], [7., 8.]],
- [[9., 10.], [11., 12.]]]).astype(np.float32))
-
- network = NetDot()
- try:
- network(x2_tensor, x1_tensor)
- except ValueError as e:
- assert ValueError == type(e)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_009():
- # for document
- input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32))
- input_x2 = Tensor(np.array(np.ones(shape=[1, 2, 3])).astype(np.float32))
-
- network = NetDot()
- try:
- network(input_x1, input_x2)
- except ValueError as e:
- assert ValueError == type(e)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_010():
- # for document
- input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32))
- input_x2 = Tensor(np.array(np.ones(shape=[1, 3, 2])).astype(np.float32))
-
- network = NetDot()
- ms_result_np = network(input_x1, input_x2)
- expect_result = np.array([[[3., 3.]],
- [[3., 3.]]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_dot_011():
- # for document
- context.set_context(mode=context.PYNATIVE_MODE, device_target="CPU")
- input_x1 = Tensor(np.array(np.ones(shape=[2, 3])).astype(np.float32))
- input_x2 = Tensor(np.array(np.ones(shape=[1, 3, 2])).astype(np.float32))
-
- network = NetDot()
- ms_result_np = network(input_x1, input_x2)
- expect_result = np.array([[[3., 3.]],
- [[3., 3.]]]).astype(np.float32)
-
- assert (ms_result_np.asnumpy() == expect_result).all()
|