|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ADA_GRAD"""
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore._checkparam import Validator as validator
- from .optimizer import Optimizer
-
- _ada_grad_opt = C.MultitypeFuncGraph("ada_grad_opt")
-
-
- @_ada_grad_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt(opt, learning_rate, weight, accum, gradient):
- """Apply ada_grad optimizer to the weight parameter."""
- success = True
- success = F.depend(success, opt(weight, accum, learning_rate, gradient))
- return success
-
-
- def _check_param_value(accum, update_slots, prim_name=None):
- """Check inputs param."""
- validator.check_value_type("accum", accum, [float], prim_name)
- validator.check_value_type("update_slots", update_slots, [bool], prim_name)
- validator.check_non_negative_float(accum, "accum", prim_name)
-
-
- class Adagrad(Optimizer):
- r"""
- Implements the Adagrad algorithm with ApplyAdagrad Operator.
-
- Adagrad is an online Learning and Stochastic Optimization.
- Refer to paper `Efficient Learning using Forward-Backward Splitting
- <https://proceedings.neurips.cc/paper/2009/file/621bf66ddb7c962aa0d22ac97d69b793-Paper.pdf>`_.
- The updating formulas are as follows,
-
- .. math::
- \begin{array}{ll} \\
- h_{t+1} = h_{t} + g\\
- w_{t+1} = w_{t} - lr*\frac{1}{\sqrt{h_{t+1}}}*g
- \end{array}
-
- :math:`h` represents the cumulative sum of gradient squared, :math:`g` represents `gradients`.
- :math:`lr` represents `learning_rate`, :math:`w` represents `params`.
-
- Note:
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
- on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
-
- When separating parameter groups, if you want to centralize the gradient, set grad_centralization to True,
- but the gradient centralization can only be applied to the parameters of the convolution layer.
- If the parameters of the non convolution layer are set to True, an error will be reported.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- Args:
- params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
- the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
- "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value must be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' must be in one of group parameters.
-
- - grad_centralization: Optional. The data type of "grad_centralization" is Bool. If "grad_centralization"
- is in the keys, the set value will be used. If not, the `grad_centralization` is False by default.
- This parameter only works on the convolution layer.
-
- accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
- learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
- When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
- the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
- use dynamic learning rate, the i-th learning rate will be calculated during the process of training
- according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
- dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
- equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
- Default: 0.001.
- update_slots (bool): If true, update accumulation. Default: True.
- loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
- Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
- `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
- `FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details.
- Default: 1.0.
- weight_decay (Union[float, int]): Weight decay value to multiply weight, must be zero or positive value.
- Default: 0.0.
-
- Inputs:
- - **grads** (tuple[Tensor]) - The gradients of `params` in the optimizer, the shape is the same as the `params`
- in optimizer.
-
- Outputs:
- Tensor[bool], the value is True.
-
- Raises:
- TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
- TypeError: If element of `parameters` is neither Parameter nor dict.
- TypeError: If `accum` or `loss_scale` is not a float.
- TypeError: If `update_slots` is not a bool.
- TypeError: If `weight_decay` is neither float nor int.
- ValueError: If `loss_scale` is less than or equal to 0.
- ValueError: If `accum` or `weight_decay` is less than 0.
-
- Supported Platforms:
- ``Ascend`` ``CPU`` ``GPU``
-
- Examples:
- >>> net = Net()
- >>> #1) All parameters use the same learning rate and weight decay
- >>> optim = nn.Adagrad(params=net.trainable_params())
- >>>
- >>> #2) Use parameter groups and set different values
- >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
- >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
- >>> group_params = [{'params': conv_params, 'weight_decay': 0.01, 'grad_centralization':True},
- ... {'params': no_conv_params, 'lr': 0.01},
- ... {'order_params': net.trainable_params()}]
- >>> optim = nn.Adagrad(group_params, learning_rate=0.1, weight_decay=0.0)
- >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01 and grad
- >>> # centralization of True.
- >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0 and grad
- >>> # centralization of False.
- >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
- >>>
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> model = Model(net, loss_fn=loss, optimizer=optim)
- """
-
- def __init__(self, params, accum=0.1, learning_rate=0.001,
- update_slots=True, loss_scale=1.0, weight_decay=0.0):
- super(Adagrad, self).__init__(learning_rate, params, weight_decay, loss_scale)
- _check_param_value(accum, update_slots, self.cls_name)
- self.accum = self.parameters.clone(prefix="accum", init=accum)
- self.hyper_map = C.HyperMap()
- self.update_slots = update_slots
- self.opt = P.ApplyAdagrad(update_slots=update_slots)
-
- def construct(self, grads):
- params = self.parameters
- accum = self.accum
- grads = self.decay_weight(grads)
- grads = self.gradients_centralization(grads)
- grads = self.scale_grad(grads)
- lr = self.get_lr()
- if self.is_group_lr:
- success = self.map_(F.partial(_ada_grad_opt, self.opt), lr, params, accum,
- grads)
- else:
- success = self.map_(F.partial(_ada_grad_opt, self.opt, lr), params, accum,
- grads)
- return success
|