|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """learning rate generator"""
- import numpy as np
-
-
- def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
- """
- generate learning rate array
-
- Args:
- global_step(int): total steps of the training
- lr_init(float): init learning rate
- lr_end(float): end learning rate
- lr_max(float): max learning rate
- warmup_epochs(int): number of warmup epochs
- total_epochs(int): total epoch of training
- steps_per_epoch(int): steps of one epoch
- lr_decay_mode(string): learning rate decay mode, including steps, poly or default
-
- Returns:
- np.array, learning rate array
- """
- lr_each_step = []
- total_steps = steps_per_epoch * total_epochs
- warmup_steps = steps_per_epoch * warmup_epochs
- if lr_decay_mode == 'steps':
- decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
- for i in range(total_steps):
- if i < decay_epoch_index[0]:
- lr = lr_max
- elif i < decay_epoch_index[1]:
- lr = lr_max * 0.1
- elif i < decay_epoch_index[2]:
- lr = lr_max * 0.01
- else:
- lr = lr_max * 0.001
- lr_each_step.append(lr)
- elif lr_decay_mode == 'poly':
- if warmup_steps != 0:
- inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
- else:
- inc_each_step = 0
- for i in range(total_steps):
- if i < warmup_steps:
- lr = float(lr_init) + inc_each_step * float(i)
- else:
- base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
- lr = float(lr_max) * base * base
- if lr < 0.0:
- lr = 0.0
- lr_each_step.append(lr)
- else:
- for i in range(total_steps):
- if i < warmup_steps:
- lr = lr_init + (lr_max - lr_init) * i / warmup_steps
- else:
- lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
- lr_each_step.append(lr)
-
- current_step = global_step
- lr_each_step = np.array(lr_each_step).astype(np.float32)
- learning_rate = lr_each_step[current_step:]
-
- return learning_rate
|