|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- create train or eval dataset.
- """
- import os
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- import mindspore.dataset.transforms.c_transforms as C2
- from config import config
-
-
- def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
- """
- create a train or eval dataset
-
- Args:
- dataset_path(string): the path of dataset.
- do_train(bool): whether dataset is used for train or eval.
- repeat_num(int): the repeat times of dataset. Default: 1
- batch_size(int): the batch size of dataset. Default: 32
-
- Returns:
- dataset
- """
- device_num = int(os.getenv("DEVICE_NUM"))
- rank_id = int(os.getenv("RANK_ID"))
-
- if device_num == 1:
- ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=4, shuffle=True)
- else:
- ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=4, shuffle=True,
- num_shards=device_num, shard_id=rank_id)
-
- resize_height = config.image_height
- resize_width = config.image_width
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- random_crop_op = C.RandomCrop((32, 32), (4, 4, 4, 4))
- random_horizontal_flip_op = C.RandomHorizontalFlip(rank_id / (rank_id + 1))
-
- resize_op = C.Resize((resize_height, resize_width))
- rescale_op = C.Rescale(rescale, shift)
- normalize_op = C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
-
- change_swap_op = C.HWC2CHW()
-
- trans = []
- if do_train:
- trans += [random_crop_op, random_horizontal_flip_op]
-
- trans += [resize_op, rescale_op, normalize_op, change_swap_op]
-
- type_cast_op = C2.TypeCast(mstype.int32)
-
- ds = ds.map(input_columns="label", operations=type_cast_op)
- ds = ds.map(input_columns="image", operations=trans)
-
- # apply shuffle operations
- ds = ds.shuffle(buffer_size=config.buffer_size)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
-
- # apply dataset repeat operation
- ds = ds.repeat(repeat_num)
-
- return ds
|