|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ######################## train and test lenet example ########################
- 1. train lenet and get network model files(.ckpt) :
- python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
-
- 2. test lenet according to model file:
- python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data
- --mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt
- """
- import os
- import argparse
- from config import mnist_cfg as cfg
-
- import mindspore.dataengine as de
- import mindspore.nn as nn
- from mindspore.model_zoo.lenet import LeNet5
- from mindspore import context, Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
- from mindspore.train import Model
- import mindspore.ops.operations as P
- import mindspore.transforms.c_transforms as C
- from mindspore.transforms import Inter
- from mindspore.nn.metrics import Accuracy
- from mindspore.ops import functional as F
- from mindspore.common import dtype as mstype
-
-
- class CrossEntropyLoss(nn.Cell):
- """
- Define loss for network
- """
- def __init__(self):
- super(CrossEntropyLoss, self).__init__()
- self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean()
- self.one_hot = P.OneHot()
- self.on_value = Tensor(1.0, mstype.float32)
- self.off_value = Tensor(0.0, mstype.float32)
-
- def construct(self, logits, label):
- label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value)
- loss = self.cross_entropy(logits, label)[0]
- loss = self.mean(loss, (-1,))
- return loss
-
- def create_dataset(data_path, batch_size=32, repeat_size=1,
- num_parallel_workers=1):
- """
- create dataset for train or test
- """
- # define dataset
- ds1 = de.MnistDataset(data_path)
-
- # apply map operations on images
- ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32))
- ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width),
- interpolation=Inter.LINEAR),
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081),
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0),
- num_parallel_workers=num_parallel_workers)
- ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers)
-
- # apply DatasetOps
- ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script
- ds1 = ds1.batch(batch_size, drop_remainder=True)
- ds1 = ds1.repeat(repeat_size)
-
- return ds1
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
- parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
- help='device where the code will be implemented (default: Ascend)')
- parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'],
- help='implement phase, set to train or test')
- parser.add_argument('--data_path', type=str, default="./MNIST_Data",
- help='path where the dataset is saved')
- parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\
- path where the trained ckpt file')
-
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
-
- network = LeNet5(cfg.num_classes)
- network.set_train()
- # net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon
- net_loss = CrossEntropyLoss()
- net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- if args.mode == 'train': # train
- ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size,
- repeat_size=cfg.epoch_size)
- print("============== Starting Training ==============")
- model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False)
- elif args.mode == 'test': # test
- print("============== Starting Testing ==============")
- param_dict = load_checkpoint(args.ckpt_path)
- load_param_into_net(network, param_dict)
- ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1)
- acc = model.eval(ds_eval, dataset_sink_mode=False)
- print("============== Accuracy:{} ==============".format(acc))
- else:
- raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))
|