|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as data_trans
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_case_repeat():
- """
- a simple repeat operation.
- """
- logger.info("Test Simple Repeat")
- # define parameters
- repeat_count = 2
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
-
-
- def test_case_shuffle():
- """
- a simple shuffle operation.
- """
- logger.info("Test Simple Shuffle")
- # define parameters
- buffer_size = 8
- seed = 10
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
-
- for item in data1.create_dict_iterator():
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
-
-
- def test_case_0():
- """
- Test Repeat then Shuffle
- """
- logger.info("Test Repeat then Shuffle")
- # define parameters
- repeat_count = 2
- buffer_size = 7
- seed = 9
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- data1 = data1.repeat(repeat_count)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
-
-
- def test_case_0_reverse():
- """
- Test Shuffle then Repeat
- """
- logger.info("Test Shuffle then Repeat")
- # define parameters
- repeat_count = 2
- buffer_size = 10
- seed = 9
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size)
- data1 = data1.repeat(repeat_count)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
-
-
- def test_case_3():
- """
- Test Map
- """
- logger.info("Test Map Rescale and Resize, then Shuffle")
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- # define data augmentation parameters
- rescale = 1.0 / 255.0
- shift = 0.0
- resize_height, resize_width = 224, 224
-
- # define map operations
- decode_op = vision.Decode()
- rescale_op = vision.Rescale(rescale, shift)
- # resize_op = vision.Resize(resize_height, resize_width,
- # InterpolationMode.DE_INTER_LINEAR) # Bilinear mode
- resize_op = vision.Resize((resize_height, resize_width))
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=rescale_op)
- data1 = data1.map(input_columns=["image"], operations=resize_op)
-
- # # apply ont-hot encoding on labels
- num_classes = 4
- one_hot_encode = data_trans.OneHot(num_classes) # num_classes is input argument
- data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
- #
- # # apply Datasets
- buffer_size = 100
- seed = 10
- batch_size = 2
- ds.config.set_seed(seed)
- data1 = data1.shuffle(buffer_size=buffer_size) # 10000 as in imageNet train script
- data1 = data1.batch(batch_size, drop_remainder=True)
-
- num_iter = 0
- for item in data1.create_dict_iterator(): # each data is a dictionary
- # in this example, each dictionary has keys "image" and "label"
- logger.info("image is: {}".format(item["image"]))
- logger.info("label is: {}".format(item["label"]))
- num_iter += 1
-
- logger.info("Number of data in data1: {}".format(num_iter))
-
-
- if __name__ == '__main__':
- logger.info('===========now test Repeat============')
- # logger.info('Simple Repeat')
- test_case_repeat()
- logger.info('\n')
-
- logger.info('===========now test Shuffle===========')
- # logger.info('Simple Shuffle')
- test_case_shuffle()
- logger.info('\n')
-
- # Note: cannot work with different shapes, hence not for image
- # logger.info('===========now test Batch=============')
- # # logger.info('Simple Batch')
- # test_case_batch()
- # logger.info('\n')
-
- logger.info('===========now test case 0============')
- # logger.info('Repeat then Shuffle')
- test_case_0()
- logger.info('\n')
-
- logger.info('===========now test case 0 reverse============')
- # # logger.info('Shuffle then Repeat')
- test_case_0_reverse()
- logger.info('\n')
-
- # logger.info('===========now test case 1============')
- # # logger.info('Repeat with Batch')
- # test_case_1()
- # logger.info('\n')
-
- # logger.info('===========now test case 2============')
- # # logger.info('Batch with Shuffle')
- # test_case_2()
- # logger.info('\n')
-
- # for image augmentation only
- logger.info('===========now test case 3============')
- logger.info('Map then Shuffle')
- test_case_3()
- logger.info('\n')
|