|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing BasicTokenizer op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- from mindspore import log as logger
- import mindspore.dataset.text as nlp
-
- BASIC_TOKENIZER_FILE = "../data/dataset/testTokenizerData/basic_tokenizer.txt"
-
- test_paras = [
- dict(
- first=1,
- last=6,
- expected_tokens=
- [['Welcome', 'to', 'Beijing', '北', '京', '欢', '迎', '您'],
- ['長', '風', '破', '浪', '會', '有', '時', ',', '直', '掛', '雲', '帆', '濟', '滄', '海'],
- ['😀', '嘿', '嘿', '😃', '哈', '哈', '😄', '大', '笑', '😁', '嘻', '嘻'],
- ['明', '朝', '(', '1368', '—', '1644', '年', ')', '和', '清', '朝',
- '(', '1644', '—', '1911', '年', ')', ',', '是', '中', '国', '封',
- '建', '王', '朝', '史', '上', '最', '后', '两', '个', '朝', '代'],
- ['明', '代', '(', '1368', '-', '1644', ')', 'と', '清', '代',
- '(', '1644', '-', '1911', ')', 'は', '、', '中', '国', 'の', '封',
- '建', '王', '朝', 'の', '歴', '史', 'における', '最', '後', 'の2つの', '王', '朝', 'でした'],
- ['명나라', '(', '1368', '-', '1644', ')', '와', '청나라', '(', '1644', '-', '1911', ')', '는',
- '중국', '봉건', '왕조의', '역사에서', '마지막', '두', '왕조였다']]
- ),
- dict(
- first=7,
- last=7,
- expected_tokens=[['this', 'is', 'a', 'funky', 'string']],
- lower_case=True
- ),
- ]
-
-
- def check_basic_tokenizer(first, last, expected_tokens, lower_case=False, keep_whitespace=False,
- normalization_form=nlp.utils.NormalizeForm.NONE, preserve_unused_token=False):
- dataset = ds.TextFileDataset(BASIC_TOKENIZER_FILE, shuffle=False)
- if first > 1:
- dataset = dataset.skip(first - 1)
- if last >= first:
- dataset = dataset.take(last - first + 1)
-
- basic_tokenizer = nlp.BasicTokenizer(lower_case=lower_case,
- keep_whitespace=keep_whitespace,
- normalization_form=normalization_form,
- preserve_unused_token=preserve_unused_token)
-
- dataset = dataset.map(operations=basic_tokenizer)
- count = 0
- for i in dataset.create_dict_iterator():
- text = nlp.to_str(i['text'])
- logger.info("Out:", text)
- logger.info("Exp:", expected_tokens[count])
- np.testing.assert_array_equal(text, expected_tokens[count])
- count = count + 1
-
-
- def test_basic_tokenizer():
- """
- Test BasicTokenizer
- """
- for paras in test_paras:
- check_basic_tokenizer(**paras)
-
-
- if __name__ == '__main__':
- test_basic_tokenizer()
|