|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.common.python_pass_register import registe_pass, PyPassManager
- from mindspore.common.api import _generate_pip_args
- from mindspore._c_expression import generate_key, Executor_
- from mindspore.common.graph_pattern import IsIn, IsPrimTypeOf, CallWith, IsNot, AnyPattern, NewTensor
-
- context.set_context(mode=context.GRAPH_MODE)
-
- def get_func_graph(obj, *args, phase="validate"):
- args_names, args_list = _generate_pip_args(obj, *args)
- dic = dict(zip(args_names, args_list))
- key = generate_key(phase, dic)
- phase_prefix = str(key[1])
- if phase == 'export':
- phase = phase + '.' + phase_prefix + '.' + str(obj.create_time)
- else:
- phase = phase_prefix + phase + '.' + str(obj.create_time)
- _executor = Executor_.get_instance()
- _executor.compile(obj, args_list, phase, False)
- return _executor.get_func_graph(phase)
-
- def test_softmax_relu():
- """
- Use python pass to transform from Softmax to ReLU.
- """
- inputs = Tensor(np.ones([42]), mindspore.float16)
- softmax_model = nn.Softmax()
-
- @registe_pass(run_only_once=True)
- def softmax_relu_pass():
- x = AnyPattern()
- softmax_pattern = IsPrimTypeOf(P.Softmax())
- pattern = CallWith(softmax_pattern, inputs=[x])
- relu_pattern = IsPrimTypeOf(P.ReLU(), should_replace=False)
- target = CallWith(relu_pattern, inputs=[x])
- return pattern, target
-
- transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
- ppm = PyPassManager()
- ppm.unregiste(softmax_relu_pass)
- assert "ReLU" in transformed_repr
- assert "Softmax" not in transformed_repr
-
- def test_isin_pattern():
- """
- Test IsIn pattern which expresses the IsIn/OneOf semantics.
- """
- inputs = Tensor(np.ones([42]), mindspore.float16)
- softmax_model = nn.Softmax()
-
- @registe_pass(run_only_once=True)
- def softmax_relu_pass():
- x = AnyPattern()
- softmax_pattern = IsPrimTypeOf(P.Softmax())
- call_softmax = CallWith(softmax_pattern, inputs=[x])
- relu_pattern = IsPrimTypeOf(P.ReLU())
- call_relu = CallWith(relu_pattern, inputs=[x])
-
- pattern = IsIn([call_softmax, call_relu])
- relu6_pattern = IsPrimTypeOf(P.ReLU6(), should_replace=False)
- target = CallWith(relu6_pattern, inputs=[x])
- return pattern, target
- transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
- ppm = PyPassManager()
- ppm.unregiste(softmax_relu_pass)
- assert "ReLU6" in transformed_repr
- assert "Softmax" not in transformed_repr
-
- def test_isnot_pattern_0():
- """
- Test IsNot pattern which expresses the IsNot semantics.
- Case: IsNot pass failed to match
- """
- class ConvBN(nn.Cell):
- def __init__(self):
- super(ConvBN, self).__init__()
- self.conv = P.Conv2D(32, 3)
- self.conv_weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
- self.scale = Tensor(np.ones([32]), mindspore.float32)
- self.bias = Tensor(np.ones([32]), mindspore.float32)
- self.mean = Tensor(np.ones([32]), mindspore.float32)
- self.variance = Tensor(np.ones([32]), mindspore.float32)
- self.bn = P.BatchNorm()
- def construct(self, x):
- x = self.conv(x, self.conv_weight)
- x = self.bn(x, self.scale, self.bias, self.mean, self.variance)
- return x
- inputs = Tensor(np.random.normal(0, 1, (10, 32, 32, 32)), mindspore.float32)
- conv_bn_model = ConvBN()
-
- @registe_pass(run_only_once=True)
- def single_bn_pass():
- """
- Sub a BN which does NOT take Conv as inputs to ReLU6.
- """
- conv2d_prim = IsPrimTypeOf("Conv2D")
- conv2d = CallWith(conv2d_prim)
- pattern_0 = IsNot(conv2d)
- pattern = CallWith(P.BatchNorm(), inputs=[pattern_0])
- target = CallWith(P.ReLU6(), inputs=[pattern_0])
- return pattern, target
-
- @registe_pass(run_only_once=True)
- def bn_pass():
- """
- Sub a BN to Softmax.
- """
- bn = P.BatchNorm()
- pattern = CallWith(bn)
- softmax = P.Softmax()
- target = CallWith(softmax, should_replace=False)
- return pattern, target
-
- transformed_repr = get_func_graph(conv_bn_model, inputs).get_return().expanded_str(5)
- ppm = PyPassManager()
- ppm.unregiste(single_bn_pass)
- ppm.unregiste(bn_pass)
- assert "ReLU6" not in transformed_repr
- assert "Softmax" in transformed_repr
-
- def test_isnot_pattern_1():
- """
- Test IsNot pattern which expresses the IsNot semantics.
- Case: IsNot pattern matches with the graph
- """
- inputs = Tensor(np.ones([42]), mindspore.float16)
- softmax_model = nn.Softmax()
-
- @registe_pass(run_only_once=True)
- def single_bn_pass():
- """
- Sub a BN which does NOT take MatMul as inputs to ReLU6.
- """
- matmul = IsPrimTypeOf("MatMul")
- pattern_0 = IsNot(matmul)
- softmax = P.Softmax()
- pattern = CallWith(softmax, inputs=[pattern_0])
- relu6 = P.ReLU6()
- target = CallWith(relu6, inputs=[pattern_0], should_replace=False)
- return pattern, target
-
- transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(5)
- ppm = PyPassManager()
- ppm.unregiste(single_bn_pass)
- assert "ReLU6" in transformed_repr
- assert "Softmax" not in transformed_repr
-
- def test_newtensor_pattern():
- inputs = Tensor(np.ones([42]), mindspore.float16)
- softmax_model = nn.Softmax()
-
- @registe_pass(run_only_once=True)
- def softmax_addn_pass():
- x = AnyPattern()
- softmax = P.Softmax()
- pattern = CallWith(softmax, inputs=[x])
-
- weight_tensor = Tensor(np.zeros([42]), mindspore.float16)
- new_weight = NewTensor(weight_tensor)
- addn_ops = P.AddN()
- target = CallWith(addn_ops, inputs=[x, new_weight], should_replace=False)
- return pattern, target
- transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
- ppm = PyPassManager()
- ppm.unregiste(softmax_addn_pass)
- assert "AddN" in transformed_repr
- assert "Softmax" not in transformed_repr
|