|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- from mindspore.common.api import ms_function
- import numpy as np
- import mindspore.context as context
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
-
- context.set_context(device_target='GPU')
-
-
- class ConcatV32(nn.Cell):
- def __init__(self):
- super(ConcatV32, self).__init__()
-
- self.cat = P.Concat(axis=2)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 1).reshape(2, 2, 1).astype(np.float32)), [2, 2, 1]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2).astype(np.float32)), [2, 2, 2]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis32():
- cat = ConcatV32()
- output = cat()
- expect = [[[0., 0., 1.],
- [1., 2., 3.]],
- [[2., 4., 5.],
- [3., 6., 7.]]]
- print(output)
- assert (output.asnumpy() == expect).all()
-
-
- class ConcatV43(nn.Cell):
- def __init__(self):
- super(ConcatV43, self).__init__()
-
- self.cat = P.Concat(axis=3)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(np.float32)), [2, 2, 2, 2]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 2 * 2 * 3).reshape(2, 2, 2, 3).astype(np.float32)), [2, 2, 2, 3]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis43():
- cat = ConcatV43()
- output = cat()
- expect = [[[[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]],
- [[4., 5., 6., 7., 8.],
- [6., 7., 9., 10., 11.]]],
- [[[8., 9., 12., 13., 14.],
- [10., 11., 15., 16., 17.]],
- [[12., 13., 18., 19., 20.],
- [14., 15., 21., 22., 23.]]]]
- assert (output.asnumpy() == expect).all()
- print(output)
-
-
- class ConcatV21(nn.Cell):
- def __init__(self):
- super(ConcatV21, self).__init__()
-
- self.cat = P.Concat(axis=1)
- self.x1 = Parameter(initializer(
- Tensor(np.arange(2 * 2).reshape(2, 2).astype(np.float32)), [2, 2]), name='x1')
- self.x2 = Parameter(initializer(
- Tensor(np.arange(2 * 3).reshape(2, 3).astype(np.float32)), [2, 3]), name='x2')
-
- @ms_function
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_axis21():
- cat = ConcatV21()
- output = cat()
- expect = [[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]]
- assert (output.asnumpy() == expect).all()
- print(output)
|