|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import argparse
- import os
- import numpy as np
- import mindspore.context as context
- import mindspore.nn as nn
- import mindspore.common.dtype as mstype
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.train.model import Model, ParallelMode
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore.communication.management import init
- from resnet import resnet50
- import random
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
- parser.add_argument('--device_num', type=int, default=1, help='Device num.')
- parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
- parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
- parser.add_argument('--epoch_size', type=int, default=1, help='Epoch size.')
- parser.add_argument('--batch_size', type=int, default=4, help='Batch size.')
- parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default="/var/log/npu/datasets/cifar", help='Dataset path')
- args_opt = parser.parse_args()
-
- device_id = int(os.getenv('DEVICE_ID'))
-
- data_home = args_opt.dataset_path
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- context.set_context(enable_task_sink=True, device_id=device_id)
- context.set_context(enable_loop_sink=True)
- context.set_context(enable_mem_reuse=True)
-
-
- def create_dataset(repeat_num=1, training=True):
- data_dir = data_home + "/cifar-10-batches-bin"
- if not training:
- data_dir = data_home + "/cifar-10-verify-bin"
- ds = de.Cifar10Dataset(data_dir)
-
- if args_opt.run_distribute:
- rank_id = int(os.getenv('RANK_ID'))
- rank_size = int(os.getenv('RANK_SIZE'))
- ds = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
-
- resize_height = 224
- resize_width = 224
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
- random_horizontal_op = vision.RandomHorizontalFlip()
- resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
- rescale_op = vision.Rescale(rescale, shift)
- normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
- changeswap_op = vision.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- c_trans = []
- if training:
- c_trans = [random_crop_op, random_horizontal_op]
- c_trans += [resize_op, rescale_op, normalize_op,
- changeswap_op]
-
- # apply map operations on images
- ds = ds.map(input_columns="label", operations=type_cast_op)
- ds = ds.map(input_columns="image", operations=c_trans)
-
- # apply repeat operations
- ds = ds.repeat(repeat_num)
-
- # apply shuffle operations
- ds = ds.shuffle(buffer_size=10)
-
- # apply batch operations
- ds = ds.batch(batch_size=args_opt.batch_size, drop_remainder=True)
-
- return ds
-
-
- class CrossEntropyLoss(nn.Cell):
- def __init__(self):
- super(CrossEntropyLoss, self).__init__()
- self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
- self.mean = P.ReduceMean()
- self.one_hot = P.OneHot()
- self.one = Tensor(1.0, mstype.float32)
- self.zero = Tensor(0.0, mstype.float32)
-
- def construct(self, logits, label):
- label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero)
- loss = self.cross_entropy(logits, label)[0]
- loss = self.mean(loss, (-1,))
- return loss
-
-
- if __name__ == '__main__':
- if args_opt.do_eval:
- context.set_context(enable_hccl=False)
- else:
- if args_opt.run_distribute:
- context.set_context(enable_hccl=True)
- context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)
- context.set_auto_parallel_context(all_reduce_fusion_split_indices=[140])
- init()
- else:
- context.set_context(enable_hccl=False)
-
- context.set_context(mode=context.GRAPH_MODE)
- epoch_size = args_opt.epoch_size
- net = resnet50(args_opt.batch_size, args_opt.num_classes)
- loss = CrossEntropyLoss()
- opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
-
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
-
- if args_opt.do_train:
- dataset = create_dataset(epoch_size)
- batch_num = dataset.get_dataset_size()
- config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=10)
- ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10", directory="./", config=config_ck)
- loss_cb = LossMonitor()
- model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
-
- if args_opt.do_eval:
- # if args_opt.checkpoint_path:
- # param_dict = load_checkpoint(args_opt.checkpoint_path)
- # load_param_into_net(net, param_dict)
- eval_dataset = create_dataset(1, training=False)
- res = model.eval(eval_dataset)
- print("result: ", res)
- checker = os.path.exists("./memreuse.ir")
- assert (checker, True)
|