|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test control ops """
- import numpy as np
- import pytest
-
- import mindspore as ms
- from mindspore import Tensor
- from mindspore import context
- from mindspore import nn
- from mindspore.common import dtype as mstype
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common import ms_function
-
- context.set_context(mode=context.GRAPH_MODE)
-
-
- grad_by_list = C.GradOperation(get_by_list=True)
- grad_all = C.GradOperation(get_all=True)
- grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
-
-
- def cond_data_test(x_init, y_init):
- class Net(nn.Cell):
- def __init__(self):
- """"""
- super(Net, self).__init__()
- self.square = P.Square()
- self.add = P.TensorAdd()
- self.value = Tensor(3, dtype=ms.float32)
- self.switch = P.GeSwitch()
- self.merge = P.Merge()
- self.less = P.Less()
-
- def construct(self, x, y):
- cond = self.less(x, y)
- st1, _ = self.switch(x, cond)
- st2, _ = self.switch(y, cond)
- add_ret = self.add(st1, st2)
- _, sf3 = self.switch(self.value, cond)
- sq_ret = self.square(sf3)
- ret = self.merge((add_ret, sq_ret))
- return ret[0]
-
- x = Tensor(x_init, dtype=ms.float32)
- y = Tensor(y_init, dtype=ms.float32)
- net = Net()
- output = net(x, y)
- return output
-
-
- def test_cond_data_true():
- output = cond_data_test(3, 8)
- print("test_cond_data_true:", output)
-
-
- def test_cond_data_false():
- output = cond_data_test(8, 3)
- print("test_cond_data_false:", output)
-
-
- def if_compile_test(x_init, y_init):
- class Net(nn.Cell):
- def __init__(self):
- """"""
- super(Net, self).__init__()
- self.square = P.Square()
- self.add = P.TensorAdd()
- self.value = Tensor(3, dtype=ms.float32)
- self.switch = P.GeSwitch()
- self.merge = P.Merge()
- self.less = P.Less()
-
- def construct(self, x, y):
- cond = self.less(x, y)
- ret = self.value
- if cond:
- ret = self.add(x, ret)
- ret = self.add(y, ret)
- else:
- ret = self.square(self.value)
- return ret
-
- x = Tensor(x_init, dtype=ms.float32)
- y = Tensor(y_init, dtype=ms.float32)
- net = Net()
- output = net(x, y)
- return output
-
-
- def test_if_none():
- class Net(nn.Cell):
- def __init__(self, z: None):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = None
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
- def test_if_str_is_not_none_right():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
-
- def test_if_str_is_not_none_left():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
-
- def test_if_none_equal_none():
- class Net(nn.Cell):
- def __init__(self, z: None):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z is None:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = None
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_str_is_null():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = ""
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
-
- def test_if_str_is_true():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 9, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_str_equal():
- class Net(nn.Cell):
- def __init__(self, z: str):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z == "ok":
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = "ok"
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_tuple_is_null():
- class Net(nn.Cell):
- def __init__(self, z: tuple):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = ()
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
-
- def test_if_tuple_is_not_null():
- class Net(nn.Cell):
- def __init__(self, z: tuple):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = (1, 2, 3)
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_dict_is_null():
- class Net(nn.Cell):
- def __init__(self, z: dict):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = {}
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == y.asnumpy())
-
-
- def test_if_dict_is_not_null():
- class Net(nn.Cell):
- def __init__(self, z: dict):
- """"""
- super(Net, self).__init__()
- self.z = z
-
- def construct(self, x, y):
- if self.z:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = {"one": 1, "two": 2}
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_else_assign():
- class Net(nn.Cell):
- def __init__(self, m: list):
- """"""
- super(Net, self).__init__()
- self.m = m
- self.n = [4, 5, 6]
-
- def construct(self, x, y):
- exp_1 = self.m if self.m else self.n
- exp_2 = self.m if exp_1 == self.n else self.n
- if exp_2 == self.m:
- if self.m:
- ret = x
- else:
- ret = y
- else:
- if self.m:
- ret = x
- else:
- ret = y
- return ret
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.zeros([3, 4, 5], np.int32))
- z = [1, 2]
- net = Net(z)
- assert np.all(net(x, y).asnumpy() == x.asnumpy())
-
-
- def test_if_compile_true():
- output = if_compile_test(3, 8)
- print("test_if_compile_true:", output)
-
-
- def test_if_compile_false():
- output = if_compile_test(8, 3)
- print("test_if_compile_false:", output)
-
-
- def test_switch_layer():
- class Layer1(nn.Cell):
- def __init__(self):
- super(Layer1, self).__init__()
- self.z1 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
-
- def construct(self, x):
- return x * self.z1
-
- class Layer2(nn.Cell):
- def __init__(self):
- super(Layer2, self).__init__()
- self.z2 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
-
- def construct(self, x):
- return x * self.z2
-
- class SwitchLayerCell(nn.Cell):
- def __init__(self):
- super(SwitchLayerCell, self).__init__()
- self.layers = (Layer1(), Layer2())
- self.z3 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
-
- def construct(self, index, x):
- ret = F.switch_layer(index, self.layers)(x) * self.z3
- return ret
-
- index = Tensor(0, dtype=mstype.int32)
- net = SwitchLayerCell()
- net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
-
-
- def test_index_to_switch_layer():
- class Layer1(nn.Cell):
- def __init__(self):
- super(Layer1, self).__init__()
- self.z1 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z1')
-
- def construct(self, x):
- return x * self.z1
-
- class Layer2(nn.Cell):
- def __init__(self):
- super(Layer2, self).__init__()
- self.z2 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z2')
-
- def construct(self, x):
- return x * self.z2
-
- class SwitchLayerCell(nn.Cell):
- def __init__(self):
- super(SwitchLayerCell, self).__init__()
- self.layers = (Layer1(), Layer2())
- self.z3 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
-
- def construct(self, index, x):
- ret = self.layers[index](x) * self.z3
- return ret
-
- index = Tensor(0, dtype=mstype.int32)
- net = SwitchLayerCell()
- net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
-
-
- def test_parser_switch_layer_switch_in_bprop():
- class OneInputBprop(nn.Cell):
- def __init__(self, funcs):
- super(OneInputBprop, self).__init__()
- self.op = P.ReLU()
- self.funcs = funcs
- def construct(self, i, x):
- return self.op(x)
- def bprop(self, i, x, out, dout):
- return i, self.funcs[i](x, dout)
-
- class Add(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.TensorAdd()
-
- def construct(self, x, y):
- return self.op(x, y)
-
- class Mul(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.Mul()
-
- def construct(self, x, y):
- return self.op(x, y)
- func1 = Add()
- func2 = Mul()
- funcs = (func1, func2)
- net = OneInputBprop(funcs)
- input1 = Tensor(np.ones([2, 2]).astype(np.float32))
- grad = Tensor(np.random.randn(2, 2).astype(np.float32))
- i = Tensor(1, mstype.int32)
- grad_net = grad_all_with_sens(net)
- grad_net(i, input1, grad)
-
-
- def test_parser_switch_layer_inputs_tuple():
- class TwoInputTupleFinalNet(nn.Cell):
- def __init__(self, funcs):
- super().__init__()
- self.funcs = funcs
-
- def construct(self, i, inputa, inputb):
- inputs = (inputa, inputb)
- x = self.funcs[i](inputs)
- return x
-
- class Add(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.TensorAdd()
-
- def construct(self, x):
- y = self.op(x[0], x[1])
- return self.op(x[0], y)
-
- class Mul(nn.Cell):
- def __init__(self):
- super().__init__()
- self.op = P.Mul()
-
- def construct(self, x):
- y = self.op(x[0], x[1])
- return self.op(x[0], y)
-
- func1 = Add()
- func2 = Mul()
-
- funcs = (func1, func2)
- net = TwoInputTupleFinalNet(funcs)
-
- input1 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- input2 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- i = Tensor(1, mstype.int32)
- grad = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- back_net = grad_all_with_sens(net)
- back_out = back_net(i, input1, input2, grad)
-
-
- def test_switch_layer_with_single_prim():
- class SwitchLayerCell(nn.Cell):
- def __init__(self):
- super(SwitchLayerCell, self).__init__()
- self.layers = (nn.ReLU(), nn.ReLU())
- self.z3 = Parameter(
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)), name='z3')
-
- def construct(self, index, x):
- ret = self.layers[index](x) * self.z3
- return ret
-
- index = Tensor(0, dtype=mstype.int32)
- net = SwitchLayerCell()
- net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
- Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
- grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
-
-
- def test_switch_layer_env_eliminate():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(1, 1, 3, pad_mode='same')
- self.conv2 = nn.Conv2d(1, 1, 5, pad_mode='same')
- self.funs = (self.conv, self.conv2)
-
- def construct(self, x, index):
- x = self.funs[index](x)
- return x
-
- class NetGrad(nn.Cell):
- def __init__(self, net):
- super(NetGrad, self).__init__()
- self.grad_op = C.GradOperation(get_by_list=True, sens_param=False)
- self.net = net
- self.weights = ParameterTuple(self.net.trainable_params())
-
- def construct(self, x, index):
- weights = self.weights
- grad = self.grad_op(self.net, weights)(x, index)
- return grad
- net = Net()
- net2 = NetGrad(net)
- x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
- i = Tensor(1, ms.int32)
- net2(x, i)
-
-
- def test_switch_layer_single_layer():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(1, 1, 3, pad_mode='same')
- self.funs = (self.conv,)
-
- def construct(self, x, index):
- x = self.funs[index](x)
- return x
-
- class NetGrad(nn.Cell):
- def __init__(self, net):
- super(NetGrad, self).__init__()
- self.grad_op = C.GradOperation(get_by_list=True, sens_param=False)
- self.net = net
- self.weights = ParameterTuple(self.net.trainable_params())
-
- def construct(self, x, index):
- weights = self.weights
- grad = self.grad_op(self.net, weights)(x, index)
- return grad
- net = Net()
- net2 = NetGrad(net)
- x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
- i = Tensor(1, ms.int32)
- net2(x, i)
-
-
- def test_control_depend_check():
- with pytest.raises(TypeError) as e:
- P.ControlDepend(0.0)
- print(e)
- with pytest.raises(ValueError) as e:
- P.ControlDepend(2)
- print(e)
- with pytest.raises(TypeError) as e:
- P.ControlDepend((2,))
- print(e)
-
-
- def test_if_nested_compile():
- class Net(nn.Cell):
- def __init__(self, auto_prefix=True):
- super().__init__(auto_prefix=auto_prefix)
- self.squre = P.Square()
- self.value = Tensor(3, dtype=ms.float32)
-
- def construct(self, x, y):
- res = self.value
- if x <= y:
- res = x + res
- res = y + res
- else:
- if x == y:
- res = self.squre(self.value * y)
- else:
- res = self.squre(self.value)
- return res
- x = Tensor(1.0, dtype=ms.float32)
- y = Tensor(2.0, dtype=ms.float32)
- net = Net()
- net(x, y)
-
-
- def test_if_inside_for():
- class Net(nn.Cell):
- def __init__(self, auto_prefix=True):
- super().__init__(auto_prefix=auto_prefix)
- self.squre = P.Square()
- self.value = Tensor(3, dtype=ms.float32)
- self.count = 4
-
- def construct(self, x, y):
- res = 0
- for i in range(self.count):
- if i == x:
- res = res + x
- else:
- res = res - y
- return res
- c1 = Tensor(1, dtype=ms.int32)
- c2 = Tensor(1, dtype=ms.int32)
- net = Net()
- net(c1, c2)
-
-
- def test_while_in_while():
- c1 = Tensor(1, dtype=ms.int32)
- c2 = Tensor(2, dtype=ms.int32)
- c3 = Tensor(3, dtype=ms.int32)
- c4 = Tensor(4, dtype=ms.int32)
- @ms_function
- def while_in_while(x, y, z, u):
- out = c4
- while x < y:
- z = c4 + c4
- while z < y:
- z = z + 1
- out = out + 1
- x = x + 1
-
- out = out + 3
- return out
- while_in_while(c1, c2, c3, c4)
-
-
- def test_tensor_cond():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.array(0, np.bool))
- self.t1 = Tensor(np.array([True], np.bool))
- def construct(self, x, y):
- t = 0
- if self.t:
- t = t - x * y
- else:
- t = t - x / y
- if self.t1:
- t = t + x / y
- else:
- t = t + x * y
- return t
-
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- net = Net()
- out = net(x, y)
-
- def test_tensor_cond_exception():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.array([True, False], np.bool))
- def construct(self, x, y):
- t = 0
- if self.t:
- t = t - x * y
- else:
- t = t - x / y
- return t
-
-
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- net = Net()
- with pytest.raises(ValueError):
- out = net(x, y)
-
- def test_while_scalar():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.x = 10
- def construct(self, x, y):
- i = 0
- t = 0
- while (i < 10):
- t = t + x + y
- i = i + 1
- return t
- net = Net()
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- out = net(x, y)
-
- def test_while_tensor():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.t = Tensor(np.ones([6, 8, 10], np.int32))
- self.count = Tensor(np.array([10], np.int32))
- def construct(self, x, y):
- i = 0
- t = self.t
- while (i < self.count):
- t = t + x + y
- i = i + 1
- return t
- net = Net()
- x = Tensor(np.ones([6, 8, 10], np.int32))
- y = Tensor(np.ones([6, 8, 10], np.int32))
- out = net(x, y)
-
-
- def test_large_for_loop():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.flatten = P.ReLU() #nn.Flatten()
-
- def construct(self, x):
- for elem in range(1, 1900):
- x = self.flatten(x + elem)
- return x
-
- t = Tensor(np.ones([2, 3], dtype=np.float32))
- net = Net()
- old_max_call_depth = context.get_context('max_call_depth')
- context.set_context(max_call_depth=60)
- with pytest.raises(RuntimeError) as err:
- net(t)
- context.set_context(max_call_depth=old_max_call_depth)
- assert 'Exceed function call depth limit 60' in str(err.value)
-
-
- def test_large_for_loop_with_continue_break():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.flatten = P.ReLU() #nn.Flatten()
-
- def construct(self, x):
- idx = 0
- for elem1 in range(200):
- idx = idx + 1
- if idx < 10:
- x = x + 0.5
- continue
- if idx > 500:
- break
- x = self.flatten(x + elem1)
- return x
-
- old_max_call_depth = context.get_context('max_call_depth')
- context.set_context(max_call_depth=2000)
- t = Tensor(np.ones([2, 3], dtype=np.float32))
- net = Net()
- net(t)
- context.set_context(max_call_depth=old_max_call_depth)
-
-
- def test_mixed_precision_cast():
- x = Tensor(np.ones([2, 3], dtype=np.float32))
- z = F.mixed_precision_cast(mstype.float16, x)
- assert z.dtype == mstype.float16
-
-
- def test_while_concat():
- class Net(nn.Cell):
- def __init__(self, data):
- super(Net, self).__init__()
- self.start = Tensor(0, dtype=mstype.int32)
- self.end = Tensor(2, dtype=mstype.int32)
- self.out = Tensor(np.zeros([2, 3], dtype=np.float32))
- self.concat = P.Concat()
-
- def construct(self, inputs):
- idx = self.start
- end = self.end
- out = self.out
- while idx < end:
- xi = inputs[idx, :, :]
- out = self.concat((out, xi))
- idx = idx + 1
- return out
-
- x = Tensor(np.arange(10 * 2 * 3).reshape(10, 2, 3).astype(np.float32))
- net = Net(x)
- net(x)
-
-
- def test_tensor_all_construct_lack_branch():
- class NetConditionLackBranch(nn.Cell):
- def __init__(self):
- super(NetConditionLackBranch, self).__init__()
- self.logicaland = P.LogicalAnd()
- self.logicalor = P.LogicalOr()
-
- def construct(self, input1, input2):
- if input1.all():
- return self.logicaland(input1, input2)
- while input1.any():
- return self.logicalor(input1, input2)
- # NOTICE: here missing return statement, default return None
-
- input_np_1 = np.random.choice([True], size=(2, 3, 4, 5))
- input_tensor_1 = Tensor(input_np_1)
- input_np_2 = np.random.choice([True, False], size=(2, 3, 4, 5))
- input_tensor_2 = Tensor(input_np_2)
- net = NetConditionLackBranch()
- with pytest.raises(Exception):
- net(input_tensor_1, input_tensor_2)
-
-
- def test_parser_switch_layer_func_primitive():
- class FinalNet(nn.Cell):
- def __init__(self, funcs):
- super().__init__()
- self.funcs = funcs
-
- def construct(self, i, input1):
- x = self.funcs[i](input1)
- return x
-
- func1 = P.ReLU()
- func2 = P.Softmax()
- funcs = (func1, func2)
- net = FinalNet(funcs)
-
- input1 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- i = Tensor(1, mstype.int32)
-
- with pytest.raises(ValueError):
- net(i, input1)
-
-
- def test_recursive_call():
- class Net(nn.Cell):
- """ Net definition """
-
- def __init__(self):
- super(Net, self).__init__()
- self.fc = nn.Dense(10, 10) # padding=0
- #self.net2 = Net2()
-
- def construct(self, x):
- net2 = Net2()
- x = net2(x)
- out = self.fc(x)
- return out
-
- class Net2(nn.Cell):
- def __init__(self):
- super(Net2, self).__init__()
- self.net = Net()
- self.fc = nn.Dense(10, 10)
- def construct(self, x):
- x = self.net(x)
- out = self.fc(x)
- return out
-
- context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
- old_max_call_depth = context.get_context('max_call_depth')
- context.set_context(max_call_depth=80)
- input_data = Tensor(np.identity(10).astype(np.float32))
- net = Net2()
- with pytest.raises(RuntimeError):
- net(input_data)
- context.set_context(max_call_depth=old_max_call_depth)
-
-
- def test_switch_layer_shape_join_failed():
- class AddFuncNet(nn.Cell):
- def __init__(self, funcs, new_func):
- super(AddFuncNet, self).__init__()
- self.funcs = funcs
- self.new_func = new_func
-
- def construct(self, i, inputs):
- final_funcs = self.funcs + (self.new_func,)
- x = final_funcs[i](inputs)
- return x
-
- class ReLUTuple(nn.Cell):
- def __init__(self):
- super(ReLUTuple, self).__init__()
- self.op = nn.ReLU()
-
- def construct(self, x):
- return self.op(x[0])
-
- func1 = nn.Softmax()
- func2 = nn.ReLU()
- func3 = ReLUTuple()
-
- funcs = (func1, func2)
-
-
- net = AddFuncNet(funcs, func3)
-
- inp = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- i = Tensor(1, mstype.int32)
- with pytest.raises(ValueError) as err:
- net(i, inp)
-
-
- def test_switch_layer_dtype_join_failed():
- class Cast(nn.Cell):
- def __init__(self, dtype):
- super(Cast, self).__init__()
- self.op = P.Cast()
- self.dtype = dtype
-
- def construct(self, x):
- y = self.op(x, self.dtype)
- return y + y
-
- class SwitchNegNet(nn.Cell):
- def __init__(self, funcs):
- super(SwitchNegNet, self).__init__()
- self.funcs = funcs
- self.op = P.Neg()
-
- def construct(self, i, inputs):
- x = self.funcs[i](inputs)
- x = self.op(x)
- return x
-
-
- func1 = nn.ReLU()
- func2 = Cast(mstype.int32)
- funcs = (func1, func2)
- net = SwitchNegNet(funcs)
-
- inp = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
- i = Tensor(0, mstype.int32)
-
- with pytest.raises(TypeError) as err:
- net(i, inp)
-
-
- def test_large_for_loop_case2():
- class Menet(nn.Cell):
- def __init__(self, axis, flag_boottom, flag_top):
- super(Menet, self).__init__()
- self.squeeze = P.Squeeze(axis)
- self.expanddims = P.ExpandDims()
- self.flatten = nn.Flatten()
- self.neg = P.Neg()
- self.axis = axis
- self.flag_boottom = flag_boottom
- self.flag_top = flag_top
-
- def construct(self, x):
- if self.flag_boottom:
- x = self.neg(x)
- for i in range(0, 1500):
- x = self.expanddims(x, self.axis)
- x = self.squeeze(x)
- x = self.flatten(x)
- if self.flag_top:
- x = self.neg(x)
- return x
-
- x = Tensor(np.ones([2, 3], dtype=np.float32))
- net = Menet(axis=0, flag_boottom=True, flag_top=True)
- old_max_call_depth = context.get_context('max_call_depth')
- context.set_context(max_call_depth=80)
- with pytest.raises(RuntimeError) as err:
- net(x)
- context.set_context(max_call_depth=old_max_call_depth)
- assert 'Exceed function call depth limit 80' in str(err.value)
|