|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Operators for math."""
-
- import copy
- import numpy as np
- from ... import context
- from .. import signature as sig
- from ..._checkparam import Validator as validator
- from ..._checkparam import Rel
- from ...common import dtype as mstype
- from ...common.tensor import Tensor
- from .._utils import get_broadcast_shape
- from ..primitive import PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register, _run_op
-
-
- def _infer_shape_reduce(x, axis, keep_dims, prim_name):
- """Common infer for reduce operator"""
-
- def reduce_one_axis(one_axis):
- validator.check_int_range('axis', one_axis, -dim, dim, Rel.INC_LEFT, prim_name)
- if one_axis < 0:
- one_axis += dim
- axis_reduce.add(one_axis)
-
- validator.check_value_type('axis', axis, [int, tuple, list], prim_name)
- dim = len(x)
- axis_reduce = set()
-
- if isinstance(axis, int):
- reduce_one_axis(axis)
- else:
- if not axis:
- if keep_dims:
- return [1] * dim
- return []
- for index, one_axis in enumerate(axis):
- validator.check_value_type('axis[%d]' % index, one_axis, [int], prim_name)
- reduce_one_axis(one_axis)
-
- out_shape = []
- for i in range(dim):
- if i in axis_reduce:
- if keep_dims:
- out_shape.append(1)
- else:
- out_shape.append(x[i])
- return out_shape
-
-
- class _BinaryOp(PrimitiveWithInfer):
- """
- Define binary operators.
- """
-
- __mindspore_signature__ = (sig.sig_dtype.T, sig.sig_dtype.T)
-
- @prim_attr_register
- def __init__(self):
- """init _BinaryOp"""
- self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
-
- def infer_shape(self, x_shape, y_shape):
- return get_broadcast_shape(x_shape, y_shape, self.name)
-
-
- class _MathBinaryOp(_BinaryOp):
- """
- Define math binary operators.
- """
-
- @staticmethod
- def do_infer_dtype(x_dtype, y_dtype, valid_dtype=mstype.number_type, prim_name=None):
- args_type = {"x": x_dtype, "y": y_dtype}
- validator.check_tensor_type_same(args_type, valid_dtype, prim_name)
- return x_dtype
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type, self.name)
-
-
- class _BitwiseBinaryOp(_MathBinaryOp):
- """
- Define bitwise binary operators.
- """
-
- @prim_attr_register
- def __init__(self):
- """init _BitwiseBinaryOp"""
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
-
- @staticmethod
- def _check_bitwise_op_input_type(x1_type, x2_type, prim):
- args = {'x1': x1_type, 'x2': x2_type}
- valid_types = mstype.int_type + mstype.uint_type
- validator.check_tensor_type_same(args, valid_types, prim)
- return x1_type
-
- def infer_dtype(self, x1_type, x2_type):
- return _BitwiseBinaryOp._check_bitwise_op_input_type(x1_type, x2_type, self.name)
-
-
- class TensorAdd(_MathBinaryOp):
- """
- Adds two input tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> add = P.TensorAdd()
- >>> input_x = Tensor(np.array([1,2,3]).astype(np.float32))
- >>> input_y = Tensor(np.array([4,5,6]).astype(np.float32))
- >>> add(input_x, input_y)
- [5,7,9]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = x + y
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class AssignAdd(PrimitiveWithInfer):
- """
- Updates a `Parameter` by adding a value to it.
-
- Inputs of `variable` and `value` comply with the implicit type conversion rules to make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- If `value` is a number, the number is automatically converted to Tensor,
- and the data type is consistent with the Tensor data type involved in the operation.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **variable** (Parameter) - The `Parameter`.
- - **value** (Union[numbers.Number, Tensor]) - The value to be added to the `variable`.
- It should have the same shape as `variable` if it is a Tensor.
-
- Examples:
- >>> class Net(Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self.AssignAdd = P.AssignAdd()
- >>> self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int64), name="global_step")
- >>>
- >>> def construct(self, x):
- >>> self.AssignAdd(self.variable, x)
- >>> return self.variable
- >>>
- >>> net = Net()
- >>> value = Tensor(np.ones([1]).astype(np.int64)*100)
- >>> net(value)
- """
- __mindspore_signature__ = (
- sig.make_sig('x', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
- sig.make_sig('value', dtype=sig.sig_dtype.T)
- )
-
- @prim_attr_register
- def __init__(self):
- """init AssignAdd"""
- self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output'])
-
- def infer_shape(self, variable, value):
- return value
-
- def infer_dtype(self, variable, value):
- args = {"variable": variable, "value": value}
- validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.name)
- return value
-
-
- class AssignSub(PrimitiveWithInfer):
- """
- Updates a `Parameter` by subtracting a value from it.
-
- Inputs of `variable` and `value` comply with the implicit type conversion rules to make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- If `value` is a number, the number is automatically converted to Tensor,
- and the data type is consistent with the Tensor data type involved in the operation.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **variable** (Parameter) - The `Parameter`.
- - **value** (Union[numbers.Number, Tensor]) - The value to be subtracted from the `variable`.
- It should have the same shape as `variable` if it is a Tensor.
-
- Examples:
- >>> class Net(Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self.AssignSub = P.AssignSub()
- >>> self.variable = mindspore.Parameter(initializer(1, [1], mindspore.int32), name="global_step")
- >>>
- >>> def construct(self, x):
- >>> self.AssignSub(self.variable, x)
- >>> return self.variable
- >>>
- >>> net = Net()
- >>> value = Tensor(np.ones([1]).astype(np.int32)*100)
- >>> net(value)
- """
-
- __mindspore_signature__ = (
- sig.make_sig('variable', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
- sig.make_sig('value', dtype=sig.sig_dtype.T)
- )
-
- @prim_attr_register
- def __init__(self):
- """init AssignSub"""
-
- def infer_shape(self, variable, value):
- return value
-
- def infer_dtype(self, variable, value):
- args = {"variable": variable, "value": value}
- validator.check_scalar_or_tensor_type_same(args, mstype.number_type, self.name)
- return value
-
-
- class _Reduce(PrimitiveWithInfer):
- """
- Definition of base class of reduction class operators.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- """
-
- __mindspore_signature__ = (
- sig.make_sig('input_x'),
- sig.make_sig('axis', default=())
- )
-
- @prim_attr_register
- def __init__(self, keep_dims=False):
- """init Reduce"""
- validator.check_value_type('keep_dims', keep_dims, [bool], self.name)
- self.init_prim_io_names(inputs=['input_x', 'axis'], outputs=['y'])
- self.add_prim_attr("io_format", "ND")
-
- def __call__(self, x, axis=()):
- args = [x, axis]
- output = _run_op(self, self.name, args)
- return output
-
- def do_infer(self, input_x, axis, valid_dtype=mstype.number_type):
- """ return meta infos of input parameters """
- axis_v = axis['value']
- input_shp = input_x['shape']
- args = {'input_x': input_x['dtype']}
- validator.check_tensor_type_same(args, valid_dtype, self.name)
-
- if axis_v is None:
- raise ValueError(f"For {self.name}, axis must be const.")
- input_shp = _infer_shape_reduce(input_shp, axis_v, self.keep_dims, self.name)
- value = None
- if input_x['value'] is not None:
- prim_map = {
- 'ReduceSum': np.sum,
- 'ReduceMax': np.max,
- 'ReduceMin': np.min,
- }
- np_reduce_func = prim_map.get(self.name, None)
-
- if np_reduce_func is not None:
- value = input_x['value'].asnumpy()
- if not axis_v:
- axis_v = [i for i in range(len(input_x['shape']))]
- axis_v = tuple(axis_v)
- value = np_reduce_func(value, axis_v, keepdims=self.keep_dims)
- value = np.array(value)
- value = Tensor(value)
- return {'shape': input_shp,
- 'dtype': input_x['dtype'],
- 'value': value}
-
- def __infer__(self, input_x, axis):
- return self.do_infer(input_x, axis)
-
-
- class ReduceMean(_Reduce):
- """
- Reduce a dimension of a tensor by averaging all elements in the dimension.
-
- The dtype of the tensor to be reduced is number.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions. Default : False.
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same dtype as the 'input_x'.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the mean of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
- >>> op = P.ReduceMean(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
-
- class ReduceSum(_Reduce):
- """
- Reduce a dimension of a tensor by summing all elements in the dimension.
-
- The dtype of the tensor to be reduced is number.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions. Default : False.
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same dtype as the 'input_x'.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the sum of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
- >>> op = P.ReduceSum(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
- @prim_attr_register
- def __init__(self, keep_dims=False):
- """init ReduceSum"""
- super(ReduceSum, self).__init__(keep_dims)
- self.__setattr_flag__ = True
-
-
- class ReduceAll(_Reduce):
- """
- Reduce a dimension of a tensor by the "logical and" of all elements in the dimension.
-
- The dtype of the tensor to be reduced is bool.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Inputs:
- - **input_x** (Tensor[bool]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, the dtype is bool.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the "logical and" of of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- and keep_dims is false, the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.array([[True, False], [True, True]]))
- >>> op = P.ReduceAll(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
- def __infer__(self, input_x, axis):
- return self.do_infer(input_x, axis, (mstype.bool_,))
-
-
- class ReduceAny(_Reduce):
- """
- Reduce a dimension of a tensor by the "logical or" of all elements in the dimension.
-
- The dtype of the tensor to be reduced is bool.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Inputs:
- - **input_x** (Tensor[bool]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, the dtype is bool.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the "logical or" of of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- and keep_dims is false, the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.array([[True, False], [True, True]]))
- >>> op = P.ReduceAny(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
- def __infer__(self, input_x, axis):
- return self.do_infer(input_x, axis, (mstype.bool_,))
-
-
- class ReduceMax(_Reduce):
- """
- Reduce a dimension of a tensor by the maximum value in this dimension.
-
- The dtype of the tensor to be reduced is number.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same dtype as the 'input_x'.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the maximum of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
- >>> op = P.ReduceMax(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
- @prim_attr_register
- def __init__(self, keep_dims=False):
- """ReduceMax"""
- super(ReduceMax, self).__init__(keep_dims)
- self.__setattr_flag__ = True
-
-
- class ReduceMin(_Reduce):
- """
- Reduce a dimension of a tensor by the minimum value in the dimension.
-
- The dtype of the tensor to be reduced is number.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same dtype as the 'input_x'.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the minimum of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
- >>> op = P.ReduceMin(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
-
- class ReduceProd(_Reduce):
- """
- Reduce a dimension of a tensor by multiplying all elements in the dimension.
-
- The dtype of the tensor to be reduced is number.
-
- Args:
- keep_dims (bool): If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions.
- Default : False, don't keep these reduced dimensions.
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same dtype as the 'input_x'.
-
- - If axis is (), and keep_dims is false,
- the output is a 0-D tensor representing the product of all elements in the input tensor.
- - If axis is int, set as 2, and keep_dims is false,
- the shape of output is :math:`(x_1, x_3, ..., x_R)`.
- - If axis is tuple(int), set as (2, 3), and keep_dims is false,
- the shape of output is :math:`(x_1, x_4, ..., x_R)`.
-
- Examples:
- >>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
- >>> op = P.ReduceProd(keep_dims=True)
- >>> output = op(input_x, 1)
- """
-
-
- class CumProd(PrimitiveWithInfer):
- """
- Compute the cumulative product of the tensor x along axis.
-
- Args:
- exclusive (bool): If True, perform exclusive cumulative product. Default: False.
- reverse (bool): If True, reverse the result along axis. Default: False
-
- Inputs:
- - **input_x** (Tensor[Number]) - The input tensor.
- - **axis** (int) - The dimensions to compute the cumulative product.
- Only constant value is allowed.
-
- Outputs:
- Tensor, has the same shape and dtype as the 'input_x'.
-
- Examples:
- >>> input_x = Tensor(np.array([a, b, c]).astype(np.float32))
- >>> op0 = P.CumProd()
- >>> output = op0(input_x, 0) # output=[a, a * b, a * b * c]
- >>> op1 = P.CumProd(exclusive=True)
- >>> output = op1(input_x, 0) # output=[1, a, a * b]
- >>> op2 = P.CumProd(reverse=True)
- >>> output = op2(input_x, 0) # output=[a * b * c, b * c, c]
- >>> op3 = P.CumProd(exclusive=True, reverse=True)
- >>> output = op3(input_x, 0) # output=[b * c, c, 1]
- """
-
- @prim_attr_register
- def __init__(self, exclusive=False, reverse=False):
- cls_name = self.name
- self.exclusive = validator.check_value_type("exclusive", exclusive, [bool], cls_name)
- self.reverse = validator.check_value_type("reverse", reverse, [bool], cls_name)
- self.init_prim_io_names(inputs=['x', 'axis'], outputs=['y'])
-
- def infer_shape(self, x_shape, axis_shape):
- return x_shape
-
- def infer_dtype(self, x_type, axis_type):
- cls_name = self.name
- validator.check_tensor_type_same({'x': x_type}, mstype.number_type, cls_name)
- validator.check_subclass("axis", axis_type, mstype.int_, cls_name)
- return x_type
-
- def infer_value(self, x, axis):
- if axis is None:
- raise ValueError(f"For {self.name}, axis must be const.")
-
-
- class MatMul(PrimitiveWithInfer):
- """
- Multiplies matrix `a` by matrix `b`.
-
- The rank of input tensors must be `2`.
-
- Args:
- transpose_a (bool): If True, `a` is transposed before multiplication. Default: False.
- transpose_b (bool): If True, `b` is transposed before multiplication. Default: False.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, C)`. If
- `transpose_a` is True, its shape should be :math:`(N, C)` after transposing.
- - **input_y** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(C, M)`. If
- `transpose_b` is True, its shape should be :math:`(C, M)` after transpose.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, M)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32)
- >>> input_y = Tensor(np.ones(shape=[3, 4]), mindspore.float32)
- >>> matmul = P.MatMul()
- >>> output = matmul(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self, transpose_a=False, transpose_b=False):
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output'])
- cls_name = self.name
- validator.check_value_type("transpose_a", transpose_a, [bool], cls_name)
- validator.check_value_type("transpose_b", transpose_b, [bool], cls_name)
- self.add_prim_attr("io_format", "ND")
-
- def check_shape_size(self, x, y):
- if len(x) != 2 or len(y) != 2:
- raise ValueError('MatMul input x, y should be the same dimension size and should be '
- + f'equal to 2, while x size = {len(x)}, y size= {len(y)}')
-
- def infer_shape(self, x, y, bias=None):
- self.check_shape_size(x, y)
- cls_name = self.name
- # expected dimension of x, y, x:[...,a,b] y:[..., c,d], the dim size should be the same except the last two
- for i in range(len(x) - 2):
- if x[i] != y[i]:
- raise ValueError(f'For \'{cls_name}\' shape in dim[{i}] not the same, while x is {x[i]}, y is {y[i]}')
-
- # validate whether last two dims satifing matrix multiply
- x_last = x[-2:]
- y_last = y[-2:]
-
- x_col = x_last[not self.transpose_a] # x_col = x_last[1] if (not transpose_a) else x_last[0]
- y_row = y_last[self.transpose_b] # y_row = y_last[0] if (not transpose_b) else y_last[1]
- if x_col != y_row:
- raise ValueError(f'For \'{cls_name}\' evaluator shapes of inputs can not do this operator,'
- + f' got {x_col} and {y_row}, with x shape {x}(transpose_a={self.transpose_a})'
- + f', y shape {y}(transpose_b={self.transpose_b}).')
- # set attribute
- self.add_prim_attr('transpose_x1', self.transpose_a)
- self.add_prim_attr('transpose_x2', self.transpose_b)
-
- ret_dims = x[: -2] + [x_last[self.transpose_a], y_last[not self.transpose_b]]
- return ret_dims
-
- def infer_dtype(self, x, y, bias=None):
- args = {"x": x, "y": y}
- validator.check_tensor_type_same(args, mstype.float_type + mstype.int_type, self.name)
- if x.element_type() == mstype.int8:
- return mstype.tensor_type(mstype.int32)
- return x
-
-
- class BatchMatMul(MatMul):
- """
- Computes matrix multiplication between two tensors by batch
-
- `result[..., :, :] = tensor(a[..., :, :]) * tensor(b[..., :, :])`.
-
- The two input tensors must have same rank and the rank must be `3` at least.
-
- Args:
- transpose_a (bool): If True, `a` is transposed on the last two dimensions before multiplication.
- Default: False.
- transpose_b (bool): If True, `b` is transposed on the last two dimensions before multiplication.
- Default: False.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
- where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
- size of the last two dimensions. If `transpose_a` is True, its shape should be :math:`(*B, C, N)`.
- - **input_y** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`. If
- `transpose_b` is True, its shape should be :math:`(*B, M, C)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(*B, N, M)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32)
- >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
- >>> batmatmul = P.BatchMatMul()
- >>> output = batmatmul(input_x, input_y)
- >>>
- >>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32)
- >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32)
- >>> batmatmul = P.BatchMatMul(transpose_a=True)
- >>> output = batmatmul(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self, transpose_a=False, transpose_b=False):
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['output'])
- cls_name = self.name
- validator.check_value_type("transpose_a", transpose_a, [bool], cls_name)
- validator.check_value_type("transpose_b", transpose_b, [bool], cls_name)
-
- def check_shape_size(self, x, y):
- if len(x) != len(y) or len(x) < 3:
- raise ValueError('For \'BatchMatMul\' input x, y should be the same dimension size and should be '
- 'greater or equal to 3,' + f' while x size = {len(x)}, y size= {len(y)}')
-
-
- class CumSum(PrimitiveWithInfer):
- """
- Computes the cumulative sum of input tensor along axis.
-
- Args:
- exclusive (bool): If True, perform exclusive mode. Default: False.
- reverse (bool): If True, perform inverse cumulative sum. Default: False.
-
- Inputs:
- - **input** (Tensor) - The input tensor to accumulate.
- - **axis** (int) - The axis to accumulate the tensor's value. Only constant value is allowed.
-
- Outputs:
- Tensor, the shape of the output tensor is consistent with the input tensor's.
-
- Examples:
- >>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32))
- >>> cumsum = P.CumSum()
- >>> output = cumsum(input, 1)
- [[ 3. 7. 13. 23.]
- [ 1. 7. 14. 23.]
- [ 4. 7. 15. 22.]
- [ 1. 4. 11. 20.]]
- """
-
- @prim_attr_register
- def __init__(self, exclusive=False, reverse=False):
- """init cumsum"""
- cls_name = self.name
- validator.check_value_type('exclusive', exclusive, [bool], cls_name)
- validator.check_value_type('reverse', reverse, [bool], cls_name)
- self.init_prim_io_names(inputs=['x', 'axis'], outputs=['y'])
-
- def __infer__(self, x, axis):
- cls_name = self.name
- x_shp = x['shape']
- if axis['value'] is None:
- raise ValueError(f"For {self.name}, axis must be const.")
- validator.check_value_type('axis', axis['value'], [int], cls_name)
- valid_types = [mstype.uint8, mstype.int8, mstype.int32, mstype.float16, mstype.float32]
- validator.check_tensor_type_same({'x': x['dtype']}, valid_types, cls_name)
- return {'shape': x_shp,
- 'dtype': x['dtype'],
- 'value': None}
-
-
- class AddN(PrimitiveWithInfer):
- """
- Computes addition of all input tensors element-wise.
-
- All input tensors should have the same shape.
-
- Inputs:
- - **input_x** (Union(tuple[Tensor], list[Tensor])) - The input tuple or list
- is made up of multiple tensors whose dtype is number or bool to be added together.
-
- Outputs:
- Tensor, has the same shape and dtype as each entry of the `input_x`.
-
- Examples:
- >>> class NetAddN(nn.Cell):
- >>> def __init__(self):
- >>> super(NetAddN, self).__init__()
- >>> self.addN = P.AddN()
- >>>
- >>> def construct(self, *z):
- >>> return self.addN(z)
- >>>
- >>> net = NetAddN()
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
- >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.float32)
- >>> net(input_x, input_y, input_x, input_y)
- [10.0, 14.0, 18.0]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=["inputs"], outputs=["sum"])
-
- def check_elim(self, inputs):
- if len(inputs) != 1:
- return (False, None)
- if isinstance(inputs[0], Tensor):
- return (True, inputs[0])
- raise TypeError("Expecting Tensor, got : {}".format(type(inputs[0])))
-
- def infer_shape(self, inputs):
- cls_name = self.name
- validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
- self.add_prim_attr('n', len(inputs))
- shp0 = inputs[0]
- for i, shp in enumerate(inputs):
- validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0, Rel.EQ, cls_name)
- return shp0
-
- def infer_dtype(self, inputs):
- cls_name = self.name
- validator.check_value_type("inputs", inputs, [tuple, list], cls_name)
- validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
- args = {}
- contains_undetermined = False
- for i, dtype in enumerate(inputs):
- args[f"inputs[{i}]"] = dtype
- if dtype == mstype.undetermined:
- contains_undetermined = True
- if not contains_undetermined:
- validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), cls_name)
- return inputs[0]
-
- def infer_value(self, inputs):
- if inputs is None:
- return None
-
- for x in inputs:
- if x is None:
- return None
-
- added = copy.deepcopy(inputs[0].asnumpy())
- for x in inputs[1:]:
- added += x.asnumpy()
- out = np.array(added, inputs[0].asnumpy().dtype)
- return Tensor(out)
-
-
- class AccumulateNV2(PrimitiveWithInfer):
- """
- Computes accumulation of all input tensors element-wise.
-
- AccumulateNV2 is like AddN with a significant difference: AccumulateNV2 won't
- wait for all of its inputs to be ready before beginning to sum. That is to say,
- AccumulateNV2 will be able to save memory when inputs are ready at different
- times since minimum temporary storage is proportional to the output size rather
- than the inputs size.
-
- Inputs:
- - **input_x** (Union(tuple[Tensor], list[Tensor])) - The input tuple or list
- is made up of multiple tensors whose dtype is number to be added together.
-
- Outputs:
- Tensor, has the same shape and dtype as each entry of the `input_x`.
-
- Examples:
- >>> class NetAccumulateNV2(nn.Cell):
- >>> def __init__(self):
- >>> super(NetAccumulateNV2, self).__init__()
- >>> self.accumulateNV2 = P.AccumulateNV2()
- >>>
- >>> def construct(self, *z):
- >>> return self.accumulateNV2(z)
- >>>
- >>> net = NetAccumulateNV2()
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
- >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.float32)
- >>> net(input_x, input_y, input_x, input_y)
- Tensor([10., 14., 18.], shape=(3,), dtype=mindspore.float32)
- """
-
- @prim_attr_register
- def __init__(self):
- self.__setattr_flag__ = True
- self.init_prim_io_names(inputs=["inputs"], outputs=["sum"])
-
- def infer_shape(self, inputs):
- cls_name = self.name
- validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
- self.add_prim_attr('n', len(inputs))
- shp0 = inputs[0]
- for i, shp in enumerate(inputs):
- validator.check(f"shape of inputs[{i}]", shp, 'shape of inputs[0]', shp0, Rel.EQ, cls_name)
- return shp0
-
- def infer_dtype(self, inputs):
- cls_name = self.name
- validator.check_value_type("inputs", inputs, [tuple, list], cls_name)
- validator.check_integer("inputs", len(inputs), 1, Rel.GE, cls_name)
- args = {}
- for i, dtype in enumerate(inputs):
- args[f"inputs[{i}]"] = dtype
- validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), cls_name)
- return inputs[0]
-
-
- class Neg(PrimitiveWithInfer):
- """
- Returns a tensor with negative values of the input tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor whose dtype is number.
-
- Outputs:
- Tensor, has the same shape and dtype as input.
-
- Examples:
- >>> neg = P.Neg()
- >>> input_x = Tensor(np.array([1, 2, -1, 2, 0, -3.5]), mindspore.float32)
- >>> result = neg(input_x)
- [-1. -2. 1. -2. 0. 3.5]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Neg"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, input_x):
- return input_x
-
- def infer_dtype(self, input_x):
- validator.check_tensor_type_same({"input_x": input_x}, mstype.number_type, self.name)
- return input_x
-
- def infer_value(self, input_x):
- if input_x is not None:
- input_x = input_x.asnumpy()
- out = np.array(-input_x, input_x.dtype)
- return Tensor(out)
-
- return None
-
-
- class InplaceAdd(PrimitiveWithInfer):
- """
- Adds v into specified rows of x. Computes y = x; y[i,] += v.
-
- Args:
- indices (Union[int, tuple]): Indices into the left-most dimension of x, and determines which rows of x
- to add with v. It is a int or tuple, whose value is in [0, the first dimension size of x).
-
- Inputs:
- - **input_x** (Tensor) - The first input is a tensor whose data type is float16, float32 or int32.
- - **input_v** (Tensor) - The second input is a tensor who has the same dimension sizes as x except
- the first dimension, which must be the same as indices's size. It has the same data type with `input_x`.
-
- Outputs:
- Tensor, has the same shape and dtype as input.
-
- Examples:
- >>> indices = (0, 1)
- >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32)
- >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32)
- >>> inplaceAdd = P.InplaceAdd(indices)
- >>> inplaceAdd(input_x, input_v)
- [[1.5 3.]
- [4. 5.5]
- [5. 6.]]
- """
-
- @prim_attr_register
- def __init__(self, indices):
- """init InplaceAdd"""
- self.init_prim_io_names(inputs=['x', 'v'], outputs=['y'])
- self.indices = indices
- validator.check_value_type('indices', indices, [tuple, int], self.name)
- if isinstance(indices, int):
- self.indices = (indices,)
- for item in self.indices:
- validator.check_value_type("item of indices", item, [int], self.name)
-
- def infer_dtype(self, x_dtype, v_dtype):
- args = {'x': x_dtype, 'v': v_dtype}
- valid_type = [mstype.int32, mstype.float16, mstype.float32]
- validator.check_tensor_type_same(args, valid_type, self.name)
- return x_dtype
-
- def infer_shape(self, x_shape, v_shape):
- validator.check("x", len(x_shape), "v", len(v_shape), Rel.EQ, self.name)
- validator.check("size of indices", len(self.indices), "v's first dimension", v_shape[0],
- Rel.EQ, self.name)
- for i in self.indices:
- if i < 0 or i >= x_shape[0]:
- raise ValueError(f'The value of indices must be in [0, {x_shape[0]}), but got {i}.')
- x_rank = len(x_shape)
- for idx in range(x_rank)[1:]:
- validator.check('v dim %d' % idx, v_shape[idx], "x dim %d" % idx, x_shape[idx], Rel.EQ, self.name)
-
- return x_shape
-
-
- class InplaceSub(PrimitiveWithInfer):
- """
- Subtracts v into specified rows of x. Computes y = x; y[i, :] -= v; return y.
-
- Args:
- indices (Union[int, tuple]): Indices into the left-most dimension of x, and determines which rows of x
- to sub with v. It is a int or tuple, whose value is in [0, the first dimension size of x).
-
- Inputs:
- - **input_x** (Tensor) - The first input is a tensor whose data type is float16, float32 or int32.
- - **input_v** (Tensor) - The second input is a tensor who has the same dimension sizes as x except
- the first dimension, which must be the same as indices's size. It has the same data type with `input_x`.
-
- Outputs:
- Tensor, has the same shape and dtype as input.
-
- Examples:
- >>> indices = (0, 1)
- >>> input_x = Tensor(np.array([[1, 2], [3, 4], [5, 6]]), mindspore.float32)
- >>> input_v = Tensor(np.array([[0.5, 1.0], [1.0, 1.5]]), mindspore.float32)
- >>> inplaceSub = P.InplaceSub(indices)
- >>> inplaceSub(input_x, input_v)
- [[0.5 1.]
- [2. 2.5]
- [5. 6.]]
- """
-
- @prim_attr_register
- def __init__(self, indices):
- """init InplaceSub"""
- self.init_prim_io_names(inputs=['x', 'v'], outputs=['y'])
- self.indices = indices
- validator.check_value_type('indices', indices, [tuple, int], self.name)
- if isinstance(indices, int):
- self.indices = (indices,)
- for item in self.indices:
- validator.check_value_type("item of indices", item, [int], self.name)
-
- def infer_dtype(self, x_dtype, v_dtype):
- args = {'x': x_dtype, 'v': v_dtype}
- valid_type = [mstype.int32, mstype.float16, mstype.float32]
- validator.check_tensor_type_same(args, valid_type, self.name)
- return x_dtype
-
- def infer_shape(self, x_shape, v_shape):
- validator.check("x", len(x_shape), "v", len(v_shape), Rel.EQ, self.name)
- validator.check("size of indices", len(self.indices), "v's first dimension", v_shape[0],
- Rel.EQ, self.name)
- for i in self.indices:
- if i < 0 or i >= x_shape[0]:
- raise ValueError(f'The value of indices must be in [0, {x_shape[0]}), but got {i}.')
- x_rank = len(x_shape)
- for idx in range(x_rank)[1:]:
- validator.check('v dim %d' % idx, v_shape[idx], "x dim %d" % idx, x_shape[idx], Rel.EQ, self.name)
-
- return x_shape
-
-
- class Sub(_MathBinaryOp):
- """
- Subtracts the second input tensor from the first input tensor element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32)
- >>> sub = P.Sub()
- >>> sub(input_x, input_y)
- [-3, -3, -3]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = x - y
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Mul(_MathBinaryOp):
- """
- Multiplies two tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
- >>> mul = P.Mul()
- >>> mul(input_x, input_y)
- [4, 10, 18]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = x * y
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class SquaredDifference(_MathBinaryOp):
- """
- Subtracts the second input tensor from the first input tensor element-wise and returns square of it.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is float16, float32, int32 or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is
- float16, float32, int32 or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([2.0, 4.0, 6.0]), mindspore.float32)
- >>> squared_difference = P.SquaredDifference()
- >>> squared_difference(input_x, input_y)
- [1.0, 4.0, 9.0]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- valid_type = [mstype.float16, mstype.float32, mstype.int32]
- return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, valid_type, self.name)
-
-
- class Square(PrimitiveWithInfer):
- """
- Returns square of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor whose dtype is number.
-
- Outputs:
- Tensor, has the same shape and dtype as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
- >>> square = P.Square()
- >>> square(input_x)
- [1.0, 4.0, 9.0]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Square"""
- self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.name)
- return x_type
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = x * x
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Rsqrt(PrimitiveWithInfer):
- """
- Computes reciprocal of square root of input tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input of Rsqrt. Each element should be a non-negative number.
-
- Outputs:
- Tensor, has the same type and shape as `input_x`.
-
- Examples:
- >>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32)
- >>> rsqrt = P.Rsqrt()
- >>> rsqrt(input_tensor)
- [[0.5, 0.5], [0.333333, 0.333333]]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Rsqrt"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.name)
- return x_type
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = 1.0 / np.sqrt(x)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Sqrt(PrimitiveWithCheck):
- """
- Returns square root of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor whose dtype is number.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32)
- >>> sqrt = P.Sqrt()
- >>> sqrt(input_x)
- [1.0, 2.0, 3.0]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Sqrt"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def check_dtype(self, x_type):
- validator.check_tensor_type_same({"x": x_type}, mstype.number_type, self.name)
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = np.sqrt(x)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Reciprocal(PrimitiveWithInfer):
- """
- Returns reciprocal of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> reciprocal = P.Reciprocal()
- >>> reciprocal(input_x)
- [1.0, 0.5, 0.25]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Reciprocal"""
- if context.get_context("device_target") == "GPU":
- self.target = "GPU"
- else:
- self.target = "OTHER"
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x):
- return x
-
- def infer_dtype(self, x):
- validator.check_subclass("x", x, mstype.tensor, self.name)
- return x
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = 1.0 / x
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Pow(_MathBinaryOp):
- """
- Computes a tensor to the power of the second input.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> input_y = 3.0
- >>> pow = P.Pow()
- >>> pow(input_x, input_y)
- [1.0, 8.0, 64.0]
- >>>
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32)
- >>> pow = P.Pow()
- >>> pow(input_x, input_y)
- [1.0, 16.0, 64.0]
- """
-
- def infer_value(self, x, power):
- if x is not None and power is not None:
- x = x.asnumpy()
- power = power.asnumpy()
- out = np.power(x, power)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Exp(PrimitiveWithInfer):
- """
- Returns exponential of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> exp = P.Exp()
- >>> exp(input_x)
- [ 2.71828183, 7.3890561 , 54.59815003]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Exp"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_subclass("x", x_type, mstype.tensor, self.name)
- return x_type
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = np.exp(x)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Expm1(PrimitiveWithInfer):
- """
- Returns exponential then minus 1 of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. With float16 or float32 data type.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32)
- >>> expm1 = P.Expm1()
- >>> expm1(input_x)
- [ 0., 1.71828183, 6.3890561 , 53.59815003]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Exp"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_subclass("x", x_type, mstype.tensor, self.name)
- validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
- return x_type
-
-
- class HistogramFixedWidth(PrimitiveWithInfer):
- """
- Returns a rank 1 histogram counting the number of entries in values that fall into every bin. The bins are equal
- width and determined by the arguments range and nbins.
-
- Args:
- dtype (string): An optional attribute. Must be one of the following types: "int32", "int64". Default: "int32".
- nbins (int): Number of histogram bins, the type is positive integer.
-
- Inputs:
- - **x** (Tensor) - Numeric Tensor. Must be one of the following types: int32, float32, float16.
- - **range** (Tensor) - Must have the same type as x. Shape [2] Tensor of same dtype as x.
- x <= range[0] will be mapped to hist[0], x >= range[1] will be mapped to hist[-1].
-
- Outputs:
- Tensor, the type is int32.
-
- Examples:
- >>> x = Tensor([-1.0, 0.0, 1.5, 2.0, 5.0, 15], mindspore.float16)
- >>> range = Tensor([0.0, 5.0], mindspore.float16)
- >>> hist = P.HistogramFixedWidth(5)
- >>> hist(x, range)
- [2 1 1 0 2]
- """
-
- @prim_attr_register
- def __init__(self, nbins, dtype='int32'):
- self.nbins = validator.check_value_type("nbins", nbins, [int], self.name)
- validator.check_integer("nbins", nbins, 1, Rel.GE, self.name)
- valid_values = ['int32', 'int64']
- self.dtype = validator.check_string("dtype", dtype, valid_values, self.name)
- self.init_prim_io_names(inputs=['x', 'range'], outputs=['y'])
-
- def infer_shape(self, x_shape, range_shape):
- return (self.nbins,)
-
- def infer_dtype(self, x_dtype, range_dtype):
- validator.check_subclass("x", x_dtype, mstype.tensor, self.name)
- valid_types = (mstype.float16, mstype.float32, mstype.int32)
- validator.check_tensor_type_same({"x": x_dtype}, valid_types, self.name)
- validator.check_tensor_type_same({"range": range_dtype}, valid_types, self.name)
- y_dtype = mstype.int32
- return y_dtype
-
-
- class Log(PrimitiveWithInfer):
- """
- Returns the natural logarithm of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> log = P.Log()
- >>> log(input_x)
- [0.0, 0.69314718, 1.38629436]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x):
- return x
-
- def infer_dtype(self, x):
- validator.check_subclass("x", x, mstype.tensor, self.name)
- return x
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = np.log(x)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Log1p(PrimitiveWithInfer):
- """
- Returns the natural logarithm of one plus the input tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. With float16 or float32 data type.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
- >>> log1p = P.Log1p()
- >>> log1p(input_x)
- [0.6931472, 1.0986123, 1.609438]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x):
- return x
-
- def infer_dtype(self, x):
- validator.check_subclass("x", x, mstype.tensor, self.name)
- validator.check_tensor_type_same({"x": x}, [mstype.float16, mstype.float32], self.name)
- return x
-
-
- class Erf(PrimitiveWithInfer):
- r"""
- Computes the Gauss error function of `input_x` element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. The data type must be float16 or float32.
-
- Outputs:
- Tensor, has the same shape and dtype as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
- >>> erf = P.Erf()
- >>> erf(input_x)
- [-0.8427168, 0., 0.8427168, 0.99530876, 0.99997765]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Erf"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
- return x_type
-
-
- class Erfc(PrimitiveWithInfer):
- r"""
- Computes the complementary error function of `input_x` element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. The data type mast be float16 or float32.
-
- Outputs:
- Tensor, has the same shape and dtype as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
- >>> erfc = P.Erfc()
- >>> erfc(input_x)
- [1.8427168, 0., 0.1572832, 0.00469124, 0.00002235]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Erfc"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
- return x_type
-
-
- class Minimum(_MathBinaryOp):
- """
- Computes the element-wise minimum of input tensors.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
- >>> minimum = P.Minimum()
- >>> minimum(input_x, input_y)
- [1.0, 2.0, 3.0]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.minimum(x, y)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Maximum(_MathBinaryOp):
- """
- Computes the element-wise maximum of input tensors.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
- >>> maximum = P.Maximum()
- >>> maximum(input_x, input_y)
- [4.0, 5.0, 6.0]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.maximum(x, y)
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class RealDiv(_MathBinaryOp):
- """
- Divide the first input tensor by the second input tensor in floating-point type element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32)
- >>> realdiv = P.RealDiv()
- >>> realdiv(input_x, input_y)
- [0.25, 0.4, 0.5]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = x / y
- out = np.array(out, x.dtype)
- return Tensor(out)
- return None
-
-
- class Div(_MathBinaryOp):
- """
- Computes the quotient of dividing the first input tensor by the second input tensor element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - When the first input is a tensor, The second input
- could be a number or a bool, or a tensor whose data type is number or bool. When the first input
- is a number or a bool, the second input should be a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Raises:
- ValueError: When `input_x` and `input_y` are not the same dtype.
-
- Examples:
- >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
- >>> div = P.Div()
- >>> div(input_x, input_y)
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.array(x / y, x.dtype)
- return Tensor(out)
- return None
-
-
- class DivNoNan(_MathBinaryOp):
- """
- Computes a safe divide which returns 0 if the y is zero.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Raises:
- ValueError: When `input_x` and `input_y` are not the same dtype.
-
- Examples:
- >>> input_x = Tensor(np.array([-1.0, 0., 1.0, 5.0, 6.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([0., 0., 0., 2.0, 3.0]), mindspore.float32)
- >>> div_no_nan = P.DivNoNan()
- >>> div_no_nan(input_x, input_y)
- [0., 0., 0., 2.5, 2.0]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- with np.errstate(divide='ignore', invalid='ignore'):
- out = np.true_divide(x, y)
- out[~np.isfinite(out)] = 0
- return out
- return None
-
-
- class FloorDiv(_MathBinaryOp):
- """
- Divide the first input tensor by the second input tensor element-wise and rounds down to the closest integer.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
- >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
- >>> floor_div = P.FloorDiv()
- >>> floor_div(input_x, input_y)
- [0, 1, -1]
- """
-
-
- class TruncateDiv(_MathBinaryOp):
- """
- Divide the first input tensor by the second input tensor element-wise for integer types, negative numbers will
- round fractional quantities towards zero.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
- >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
- >>> truncate_div = P.TruncateDiv()
- >>> truncate_div(input_x, input_y)
- [0, 1, 0]
- """
-
-
- class TruncateMod(_MathBinaryOp):
- """
- Returns element-wise remainder of division.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
- >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
- >>> truncate_mod = P.TruncateMod()
- >>> truncate_mod(input_x, input_y)
- [2, 1, -1]
- """
-
-
- class Mod(_MathBinaryOp):
- """
- Computes the remainder of dividing the first input tensor by the second input tensor element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar. When the inputs are two tensors,
- both dtypes cannot be bool, and the shapes of them could be broadcast. When the inputs are one tensor
- and one scalar, the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number]) - The first input is a number or a tensor whose data type is number.
- - **input_y** (Union[Tensor, Number]) - When the first input is a tensor, The second input
- could be a number or a tensor whose data type is number. When the first input is a number,
- the second input should be a tensor whose data type is number.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Raises:
- ValueError: When `input_x` and `input_y` are not the same dtype.
-
- Examples:
- >>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
- >>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32)
- >>> mod = P.Mod()
- >>> mod(input_x, input_y)
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- return Tensor(np.fmod(x, y))
- return None
-
-
- class Floor(PrimitiveWithInfer):
- """
- Round a tensor down to the closest integer element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. It's element data type must be float.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)
- >>> floor = P.Floor()
- >>> floor(input_x)
- [1.0, 2.0, -2.0]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({"x": x_dtype}, mstype.float_type, self.name)
- return x_dtype
-
-
- class FloorMod(_MathBinaryOp):
- """
- Compute element-wise remainder of division.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool , and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
- >>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
- >>> floor_mod = P.FloorMod()
- >>> floor_mod(input_x, input_y)
- [2, 1, 2]
- """
-
-
- class Ceil(PrimitiveWithInfer):
- """
- Round a tensor up to the closest integer element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. It's element data type must be float16 or float32.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)
- >>> ceil_op = P.Ceil()
- >>> ceil_op(input_x)
- [2.0, 3.0, -1.0]
- """
-
- @prim_attr_register
- def __init__(self):
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({"x": x_dtype}, [mstype.float16, mstype.float32], self.name)
- return x_dtype
-
-
- class Xdivy(_MathBinaryOp):
- """
- Divide the first input tensor by the second input tensor element-wise. Returns zero when `x` is zero.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is float16, float32 or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is float16, float32 or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([2, 4, -1]), mindspore.float32)
- >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32)
- >>> xdivy = P.Xdivy()
- >>> xdivy(input_x, input_y)
- [1.0, 2.0, -0.5]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, [mstype.float16, mstype.float32], self.name)
-
-
- class Xlogy(_MathBinaryOp):
- """
- Computes first input tensor multiplied by the logarithm of second input tensor element-wise.
- Returns zero when `x` is zero.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is float16, float32 or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is float16, float32 or bool.
- The value must be positive.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,
- and the data type is the one with high precision or high digits among the two inputs.
-
- Examples:
- >>> input_x = Tensor(np.array([-5, 0, 4]), mindspore.float32)
- >>> input_y = Tensor(np.array([2, 2, 2]), mindspore.float32)
- >>> xlogy = P.Xlogy()
- >>> xlogy(input_x, input_y)
- [-3.465736, 0.0, 2.7725887]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, [mstype.float16, mstype.float32], self.name)
-
-
- class Acosh(PrimitiveWithInfer):
- """
- Compute inverse hyperbolic cosine of x element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> acosh = P.Acosh()
- >>> input_x = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
- >>> output = acosh(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init Acosh"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Cosh(PrimitiveWithInfer):
- """
- Computes hyperbolic cosine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> cosh = P.Cosh()
- >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
- >>> output = cosh(input_x)
- [1.0289385 1.364684 1.048436 1.4228927]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Cosh"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Asinh(PrimitiveWithInfer):
- """
- Compute inverse hyperbolic sine of x element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> asinh = P.Asinh()
- >>> input_x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
- >>> output = asinh(input_x)
- [-2.3212, 1.1976, 1.8184, 5.2983]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Asinh"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Sinh(PrimitiveWithInfer):
- """
- Computes hyperbolic sine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> sinh = P.Sinh()
- >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32)
- >>> output = sinh(input_x)
- [0.6604918 0.28367308 0.44337422 0.6604918]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Sinh"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class _LogicBinaryOp(_BinaryOp):
- """
- Define logic binary operators.
- """
-
- @staticmethod
- def do_infer_dtype(x_dtype, y_dtype, valid_type=mstype.number_type, prim_name=None):
- args_dtype = {"x": x_dtype, "y": y_dtype}
- validator.check_tensor_type_same(args_dtype, valid_type, prim_name)
- return mstype.tensor_type(mstype.bool_)
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, prim_name=self.name)
-
-
- class Equal(_LogicBinaryOp):
- """
- Computes the equivalence between two tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors, the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar, the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
- >>> equal = P.Equal()
- >>> equal(input_x, 2.0)
- [False, True, False]
- >>>
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
- >>> equal = P.Equal()
- >>> equal(input_x, input_y)
- [True, True, False]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.name)
-
-
- class ApproximateEqual(_LogicBinaryOp):
- """
- Returns the truth value of abs(x1-x2) < tolerance element-wise.
-
- Inputs of `x1` and `x2` comply with the implicit type conversion rules to make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Args:
- tolerance (float): The maximum deviation that two elements can be considered equal. Default: 1e-05.
-
- Inputs:
- - **x1** (Tensor) - A tensor. Must be one of the following types: float32, float16.
- - **x2** (Tensor) - A tensor of the same type and shape as 'x1'.
-
- Outputs:
- Tensor, the shape is the same as the shape of 'x1', and the data type is bool.
-
- Examples:
- >>> x1 = Tensor(np.array([1, 2, 3]), mindspore.float32)
- >>> x2 = Tensor(np.array([2, 4, 6]), mindspore.float32)
- >>> approximate_equal = P.ApproximateEqual(2.)
- >>> result = approximate_equal(x1, x2)
- [True True False]
- """
-
- @prim_attr_register
- def __init__(self, tolerance=1e-05):
- """Init ApproximateEqual"""
- validator.check_value_type("tolerance", tolerance, [float], self.name)
-
- def infer_shape(self, x_shape, y_shape):
- validator.check("x_shape", x_shape, "y_shape", y_shape, Rel.EQ, self.name)
- return x_shape
-
- def infer_dtype(self, x_dtype, y_dtype):
- args_dtype = {"x": x_dtype, "y": y_dtype}
- valid_type = [mstype.float32, mstype.float16]
- validator.check_tensor_type_same(args_dtype, valid_type, prim_name=self.name)
- return mstype.tensor_type(mstype.bool_)
-
-
- class EqualCount(PrimitiveWithInfer):
- """
- Computes the number of the same elements of two tensors.
-
- The two input tensors should have same data type and shape.
-
- Inputs:
- - **input_x** (Tensor) - The first input tensor.
- - **input_y** (Tensor) - The second input tensor.
-
- Outputs:
- Tensor, with the type same as input tensor and size as (1,).
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
- >>> equal_count = P.EqualCount()
- >>> equal_count(input_x, input_y)
- [2]
- """
-
- @prim_attr_register
- def __init__(self):
- """init EqualCount"""
- self.init_prim_io_names(inputs=['x', 'y'], outputs=['output'])
-
- def infer_shape(self, x_shape, y_shape):
- validator.check("x_shape", x_shape, "y_shape", y_shape, Rel.EQ, self.name)
- output_shape = (1,)
- return output_shape
-
- def infer_dtype(self, x_dtype, y_dtype):
- args = {'x': x_dtype, 'y': y_dtype}
- validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), self.name)
- return x_dtype
-
-
- class NotEqual(_LogicBinaryOp):
- """
- Computes the non-equivalence of two tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors, the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar, the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32)
- >>> not_equal = P.NotEqual()
- >>> not_equal(input_x, 2.0)
- [True, False, True]
- >>>
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32)
- >>> not_equal = P.NotEqual()
- >>> not_equal(input_x, input_y)
- [False, False, True]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, mstype.number_type + (mstype.bool_,), self.name)
-
-
- class Greater(_LogicBinaryOp):
- """
- Computes the boolean value of :math:`x > y` element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
- >>> greater = P.Greater()
- >>> greater(input_x, input_y)
- [False, True, False]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.array(np.greater(x, y))
- return Tensor(out)
- return None
-
-
- class GreaterEqual(_LogicBinaryOp):
- """
- Computes the boolean value of :math:`x >= y` element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
- >>> greater_equal = P.GreaterEqual()
- >>> greater_equal(input_x, input_y)
- [True, True, False]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.array(np.greater_equal(x, y))
- return Tensor(out)
- return None
-
-
- class Less(_LogicBinaryOp):
- """
- Computes the boolean value of :math:`x < y` element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool, and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
- >>> less = P.Less()
- >>> less(input_x, input_y)
- [False, False, True]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.array(np.less(x, y))
- return Tensor(out)
- return None
-
-
- class LessEqual(_LogicBinaryOp):
- """
- Computes the boolean value of :math:`x <= y` element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one scalar.
- When the inputs are two tensors,
- dtypes of them cannot be both bool , and the shapes of them could be broadcast.
- When the inputs are one tensor and one scalar,
- the scalar only could be a constant.
-
- Inputs:
- - **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
- a bool or a tensor whose data type is number or bool.
- - **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
- a bool when the first input is a tensor or a tensor whose data type is number or bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32)
- >>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32)
- >>> less_equal = P.LessEqual()
- >>> less_equal(input_x, input_y)
- [True, False, True]
- """
-
- def infer_value(self, x, y):
- if x is not None and y is not None:
- x = x.asnumpy()
- y = y.asnumpy()
- out = np.array(np.less_equal(x, y))
- return Tensor(out)
- return None
-
-
- class LogicalNot(PrimitiveWithInfer):
- """
- Computes the "logical NOT" of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor whose dtype is bool.
-
- Outputs:
- Tensor, the shape is the same as the `input_x`, and the dtype is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
- >>> logical_not = P.LogicalNot()
- >>> logical_not(input_x)
- [False, True, False]
- """
-
- @prim_attr_register
- def __init__(self):
- """init LogicalNot"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({"x": x_dtype}, [mstype.bool_], self.name)
- return mstype.tensor_type(mstype.bool_)
-
-
- class LogicalAnd(_LogicBinaryOp):
- """
- Computes the "logical AND" of two tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one bool.
- When the inputs are two tensors, the shapes of them could be broadcast,
- and the data types of them should be bool.
- When the inputs are one tensor and one bool, the bool object only could be a constant,
- and the data type of the tensor should be bool.
-
- Inputs:
- - **input_x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type is bool.
- - **input_y** (Union[Tensor, bool]) - The second input is a bool when the first input is a tensor or
- a tensor whose data type is bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting, and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
- >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
- >>> logical_and = P.LogicalAnd()
- >>> logical_and(input_x, input_y)
- [True, False, False]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.name)
-
-
- class LogicalOr(_LogicBinaryOp):
- """
- Computes the "logical OR" of two tensors element-wise.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- The inputs must be two tensors or one tensor and one bool.
- When the inputs are two tensors, the shapes of them could be broadcast,
- and the data types of them should be bool.
- When the inputs are one tensor and one bool, the bool object only could be a constant,
- and the data type of the tensor should be bool.
-
- Inputs:
- - **input_x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type is bool.
- - **input_y** (Union[Tensor, bool]) - The second input is a bool when the first input is a tensor or
- a tensor whose data type is bool.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is bool.
-
- Examples:
- >>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_)
- >>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_)
- >>> logical_or = P.LogicalOr()
- >>> logical_or(input_x, input_y)
- [True, True, True]
- """
-
- def infer_dtype(self, x_dtype, y_dtype):
- return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.name)
-
-
- class IsNan(PrimitiveWithInfer):
- """
- Judging which elements are nan for each position
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape of input, and the dtype is bool.
-
- Examples:
- >>> is_nan = P.IsNan()
- >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
- >>> result = is_nan(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init IsNan"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- return mstype.bool_
-
-
- class IsInf(PrimitiveWithInfer):
- """
- Judging which elements are inf or -inf for each position
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape of input, and the dtype is bool.
-
- Examples:
- >>> is_inf = P.IsInf()
- >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
- >>> result = is_inf(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init IsInf"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- return mstype.bool_
-
-
- class IsFinite(PrimitiveWithInfer):
- """
- Judging which elements are finite for each position
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape of input, and the dtype is bool.
-
- Examples:
- >>> is_finite = P.IsFinite()
- >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
- >>> result = is_finite(input_x)
- [False True False]
- """
-
- @prim_attr_register
- def __init__(self):
- """init IsFinite"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_subclass("x", x_dtype, mstype.tensor, self.name)
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type + (mstype.bool_,), self.name)
- return mstype.bool_
-
-
- class FloatStatus(PrimitiveWithInfer):
- """
- Determine if the elements contains nan, inf or -inf. `0` for normal, `1` for overflow.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. The data type must be float16 or float32.
-
- Outputs:
- Tensor, has the shape of `(1,)`, and has the same dtype of input `mindspore.dtype.float32` or
- `mindspore.dtype.float16`.
-
- Examples:
- >>> float_status = P.FloatStatus()
- >>> input_x = Tensor(np.array([np.log(-1), 1, np.log(0)]), mindspore.float32)
- >>> result = float_status(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init FloatStatus"""
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return [1]
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, [mstype.float32, mstype.float16], self.name)
- return x_dtype
-
-
- class NPUAllocFloatStatus(PrimitiveWithInfer):
- """
- Allocates a flag to store the overflow status.
-
- The flag is a tensor whose shape is `(8,)` and data type is `mindspore.dtype.float32`.
-
- Note:
- Examples: see `NPUGetFloatStatus`.
-
- Outputs:
- Tensor, has the shape of `(8,)`.
-
- Examples:
- >>> alloc_status = P.NPUAllocFloatStatus()
- >>> init = alloc_status()
- Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32)
- """
-
- @prim_attr_register
- def __init__(self):
- """init NPUAllocFloatStatus"""
- self.add_prim_attr("_side_effect_flag", True)
-
- def infer_shape(self):
- return [8]
-
- def infer_dtype(self):
- return mstype.float32
-
-
- class NPUGetFloatStatus(PrimitiveWithInfer):
- """
- Updates the flag which is the output tensor of `NPUAllocFloatStatus` with latest overflow status.
-
- The flag is a tensor whose shape is `(8,)` and data type is `mindspore.dtype.float32`.
- If the sum of the flag equals 0, there is no overflow happened. If the sum of the flag is bigger than 0, there
- is overflow happened.
-
- Inputs:
- - **input_x** (Tensor) - The output tensor of `NPUAllocFloatStatus`.
- The data type must be float16 or float32.
-
- Outputs:
- Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
-
- Examples:
- >>> alloc_status = P.NPUAllocFloatStatus()
- >>> get_status = P.NPUGetFloatStatus()
- >>> init = alloc_status()
- >>> flag = get_status(init)
- Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32)
- """
-
- @prim_attr_register
- def __init__(self):
- """init NPUGetFloatStatus"""
- self.add_prim_attr("_side_effect_flag", True)
-
- def infer_shape(self, x_shape):
- cls_name = self.name
- validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name)
- validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name)
- return [8]
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, [mstype.float16, mstype.float32], self.name)
- return mstype.float32
-
-
- class NPUClearFloatStatus(PrimitiveWithInfer):
- """
- Clear the flag which stores the overflow status.
-
- Note:
- The flag is in the register on the `Ascend` device. It will be reset and can not be reused again after the
- `NPUClearFloatStatus` is called.
-
- Examples: see `NPUGetFloatStatus`.
-
- Inputs:
- - **input_x** (Tensor) - The output tensor of `NPUAllocFloatStatus`.
- The data type must be float16 or float32.
-
- Outputs:
- Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero.
-
- Examples:
- >>> alloc_status = P.NPUAllocFloatStatus()
- >>> get_status = P.NPUGetFloatStatus()
- >>> clear_status = P.NPUClearFloatStatus()
- >>> init = alloc_status()
- >>> flag = get_status(init)
- >>> clear = clear_status(init)
- Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32)
- """
-
- @prim_attr_register
- def __init__(self):
- """init NPUClearFloatStatus"""
- self.add_prim_attr("_side_effect_flag", True)
-
- def infer_shape(self, x_shape):
- cls_name = self.name
- validator.check_integer("len(x_shape)", len(x_shape), 1, Rel.EQ, cls_name)
- validator.check_integer("x_shape[0]", x_shape[0], 8, Rel.EQ, cls_name)
- return [8]
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, [mstype.float16, mstype.float32], self.name)
- return mstype.float32
-
-
- class Cos(PrimitiveWithInfer):
- """
- Computes cosine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> cos = P.Cos()
- >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
- >>> output = cos(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init Cos"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class ACos(PrimitiveWithInfer):
- """
- Computes arccosine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> acos = P.ACos()
- >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
- >>> output = acos(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init ACos"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Sin(PrimitiveWithInfer):
- """
- Computes sine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> sin = P.Sin()
- >>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), mindspore.float32)
- >>> output = sin(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """Init Sin."""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Asin(PrimitiveWithInfer):
- """
- Computes arcsine of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> asin = P.Asin()
- >>> input_x = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
- >>> output = asin(input_x)
- [0.8331, 0.0400, 0.3047, 0.5944]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Asin"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class NMSWithMask(PrimitiveWithInfer):
- """
- Select some bounding boxes in descending order of score.
-
- Args:
- iou_threshold (float): Specifies the threshold of overlap boxes with respect to
- IOU. Default: 0.5.
-
- Raises:
- ValueError: If the iou_threshold is not a float number, or if the first dimension
- of input Tensor is less than or equal to 0, or if the data type of the input
- Tensor is not float16 or float32.
-
- Inputs:
- - **bboxes** (Tensor) - The shape of tensor is :math:`(N, 5)`. Input bounding boxes.
- `N` is the number of input bounding boxes. Every bounding box
- contains 5 values, the first 4 values are the coordinates of bounding
- box, and the last value is the score of this bounding box.
- The data type must be float16 or float32.
-
- Outputs:
- tuple[Tensor], tuple of three tensors, they are selected_boxes, selected_idx and selected_mask.
-
- - **selected_boxes** (Tensor) - The shape of tensor is :math:`(N, 5)`. Bounding boxes
- list after non-max suppression calculation.
- - **selected_idx** (Tensor) - The shape of tensor is :math:`(N,)`. The indexes list of
- valid input bounding boxes.
- - **selected_mask** (Tensor) - The shape of tensor is :math:`(N,)`. A mask list of
- valid output bounding boxes.
-
- Examples:
- >>> bbox = np.random.rand(128, 5)
- >>> bbox[:, 2] += bbox[:, 0]
- >>> bbox[:, 3] += bbox[:, 1]
- >>> inputs = Tensor(bbox, mindspore.float32)
- >>> nms = P.NMSWithMask(0.5)
- >>> output_boxes, indices, mask = nms(inputs)
- """
-
- @prim_attr_register
- def __init__(self, iou_threshold=0.5):
- """Init NMSWithMask"""
- validator.check_value_type("iou_threshold", iou_threshold, [float], self.name)
- self.init_prim_io_names(inputs=['bboxes'], outputs=['selected_boxes', 'selected_idx', 'selected_mask'])
- self.is_ge = context.get_context("enable_ge")
-
- def infer_shape(self, bboxes_shape):
- cls_name = self.name
- validator.check_integer("bboxes rank", len(bboxes_shape), 2, Rel.EQ, cls_name)
- validator.check_integer("bboxes.shape[0]", bboxes_shape[0], 0, Rel.GT, cls_name)
- validator.check_integer("bboxes.shape[1]", bboxes_shape[1], 5, Rel.EQ, cls_name)
- num = bboxes_shape[0]
- return (bboxes_shape, (num,), (num,))
-
- def infer_dtype(self, bboxes_dtype):
- validator.check_tensor_type_same({"bboxes": bboxes_dtype}, [mstype.float16, mstype.float32], self.name)
- return (bboxes_dtype, mstype.int32, mstype.bool_)
-
-
- class Abs(PrimitiveWithInfer):
- """
- Returns absolute value of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor. The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32)
- >>> abs = P.Abs()
- >>> abs(input_x)
- [1.0, 1.0, 0.0]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Abs"""
- self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name)
- return x_type
-
- def infer_value(self, x):
- if x is not None:
- x = x.asnumpy()
- out = np.array(np.abs(x, dtype=x.dtype))
- return Tensor(out)
- return None
-
-
- class Sign(PrimitiveWithInfer):
- r"""
- Perform :math:`sign` on tensor element-wise.
-
- Note:
- .. math::
- sign(x) = \begin{cases} -1, &if\ x < 0 \cr
- 0, &if\ x == 0 \cr
- 1, &if\ x > 0\end{cases}
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape and type as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32)
- >>> sign = P.Sign()
- >>> output = sign(input_x)
- [[1.0, 0.0, -1.0]]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x': x_dtype}, mstype.number_type, self.name)
- return x_dtype
-
-
- class Round(PrimitiveWithInfer):
- """
- Returns half to even of a tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, has the same shape and type as the `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32)
- >>> round = P.Round()
- >>> round(input_x)
- [1.0, 2.0, 2.0, 2.0, -4.0]
- """
-
- @prim_attr_register
- def __init__(self):
- """init Round"""
- self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name)
- return x_type
-
-
- class Tan(PrimitiveWithInfer):
- """
- Computes tangent of `input_x` element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. Data type should be
- float16, float32 or int32.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> tan = P.Tan()
- >>> input_x = Tensor(np.array([-1.0, 0.0, 1.0]), mindspore.float32)
- >>> output = tan(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init Tan"""
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- valid_types = [mstype.float16, mstype.float32, mstype.int32]
- validator.check_tensor_type_same({'x': x_type}, valid_types, self.name)
- return x_type
-
-
- class Atan(PrimitiveWithInfer):
- """
- Computes the trignometric inverse tangent of x element-wise.
-
- Inputs:
- - **input_x** (Tensor): The input tensor.
-
- Outputs:
- A Tensor. Has the same type as x.
-
- Examples:
- >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32)
- >>> tan = P.Tan()
- >>> output_y = tan(input_x)
- >>> atan = P.Atan()
- >>> atan(output_y)
- [[1.047, 07850001]]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name)
- return x_type
-
-
- class Atanh(PrimitiveWithInfer):
- """
- Computes inverse hyperbolic tangent of x element-wise.
-
- Inputs:
- - **input_x** (Tensor): The input tensor.
-
- Outputs:
- A Tensor. Has the same type as x.
-
- Examples:
- >>> input_x = Tensor(np.array([1.047, 0.785]), mindspore.float32)
- >>> atanh = P.Atanh()
- >>> atanh(input_x)
- [[1.8869909 1.058268]]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_type):
- validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name)
- return x_type
-
-
- class Atan2(_MathBinaryOp):
- r"""
- Returns arctangent of input_x/input_y element-wise.
-
- It returns :math:`\theta\ \in\ [-\pi, \pi]`
- such that :math:`x = r*\sin(\theta), y = r*\cos(\theta)`, where :math:`r = \sqrt{x^2 + y^2}`.
-
- Inputs of `input_x` and `input_y` comply with the implicit type conversion rules to make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **input_x** (Tensor) - The input tensor.
- - **input_y** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, the shape is the same as the shape after broadcasting,and the data type is same as `input_x`.
-
- Examples:
- >>> input_x = Tensor(np.array([[0, 1]]), mindspore.float32)
- >>> input_y = Tensor(np.array([[1, 1]]), mindspore.float32)
- >>> atan2 = P.Atan2()
- >>> atan2(input_x, input_y)
- [[0. 0.7853982]]
- """
-
-
- class SquareSumAll(PrimitiveWithInfer):
- """
- Returns square sum all of a tensor element-wise
-
- Inputs:
- - **input_x1** (Tensor) - The input tensor. The data type must be float16 or float32.
- - **input_x2** (Tensor) - The input tensor same type and shape as the `input_x1`.
-
- Note:
- SquareSumAll only supports float16 and float32 data type.
-
- Outputs:
- - **output_y1** (Tensor) - The same type as the `input_x1`.
- - **output_y2** (Tensor) - The same type as the `input_x1`.
-
- Examples:
- >>> input_x1 = Tensor(np.random.randint([3, 2, 5, 7]), mindspore.float32)
- >>> input_x2 = Tensor(np.random.randint([3, 2, 5, 7]), mindspore.float32)
- >>> square_sum_all = P.SquareSumAll()
- >>> square_sum_all(input_x1, input_x2)
- """
-
- @prim_attr_register
- def __init__(self):
- """init SquareSumAll"""
-
- def infer_shape(self, x_shape, y_shape):
- validator.check("x1_shape", x_shape, "x2_shape", y_shape, Rel.EQ, self.name)
- return [], []
-
- def infer_dtype(self, x_type, y_type):
- validator.check_tensor_type_same({'x1_type': x_type}, [mstype.float16, mstype.float32], self.name)
- validator.check_tensor_type_same({'x2_type': y_type}, [mstype.float16, mstype.float32], self.name)
- return x_type, y_type
-
-
- class BitwiseAnd(_BitwiseBinaryOp):
- """
- Returns bitwise `and` of two tensors element-wise.
-
- Inputs of `input_x1` and `input_x2` comply with the implicit type conversion rules to
- make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **input_x1** (Tensor) - The input tensor with int16, int32 or uint16 data type.
- - **input_x2** (Tensor) - The input tensor with same type as the `input_x1`.
-
- Outputs:
- - **y** (Tensor) - The same type as the `input_x1`.
-
- Examples:
- >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16)
- >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)
- >>> bitwise_and = P.BitwiseAnd()
- >>> bitwise_and(input_x1, input_x2)
- [0, 0, 1, -1, 1, 0, 1]
- """
-
-
- class BitwiseOr(_BitwiseBinaryOp):
- """
- Returns bitwise `or` of two tensors element-wise.
-
- Inputs of `input_x1` and `input_x2` comply with the implicit type conversion rules to
- make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **input_x1** (Tensor) - The input tensor with int16, int32 or uint16 data type.
- - **input_x2** (Tensor) - The input tensor with same type as the `input_x1`.
-
- Outputs:
- - **y** (Tensor) - The same type as the `input_x1`.
-
- Examples:
- >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16)
- >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)
- >>> bitwise_or = P.BitwiseOr()
- >>> bitwise_or(input_x1, input_x2)
- [0, 1, 1, -1, -1, 3, 3]
- """
-
-
- class BitwiseXor(_BitwiseBinaryOp):
- """
- Returns bitwise `xor` of two tensors element-wise.
-
- Inputs of `input_x1` and `input_x2` comply with the implicit type conversion rules to
- make the data types consistent.
- If they have different data types, lower priority data type will be converted to
- relatively highest priority data type.
- RuntimeError exception will be thrown when the data type conversion of Parameter is required.
-
- Inputs:
- - **input_x1** (Tensor) - The input tensor with int16, int32 or uint16 data type.
- - **input_x2** (Tensor) - The input tensor with same type as the `input_x1`.
-
- Outputs:
- - **y** (Tensor) - The same type as the `input_x1`.
-
- Examples:
- >>> input_x1 = Tensor(np.array([0, 0, 1, -1, 1, 1, 1]), mstype.int16)
- >>> input_x2 = Tensor(np.array([0, 1, 1, -1, -1, 2, 3]), mstype.int16)
- >>> bitwise_xor = P.BitwiseXor()
- >>> bitwise_xor(input_x1, input_x2)
- [0, 1, 0, 0, -2, 3, 2]
- """
-
-
- class BesselI0e(PrimitiveWithInfer):
- """
- Computes BesselI0e of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`. Data type should be float16 or float32.
-
- Examples:
- >>> bessel_i0e = P.BesselI0e()
- >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
- >>> output = bessel_i0e(input_x)
- [0.7979961, 0.5144438, 0.75117415, 0.9157829]
- """
-
- @prim_attr_register
- def __init__(self):
- """init BesselI0e"""
-
- def infer_shape(self, x):
- return x
-
- def infer_dtype(self, x):
- validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
- return x
-
-
- class BesselI1e(PrimitiveWithInfer):
- """
- Computes BesselI1e of input element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`. Data type should be float16 or float32.
-
- Examples:
- >>> bessel_i1e = P.BesselI1e()
- >>> input_x = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), mindspore.float32)
- >>> output = bessel_i1e(input_x)
- [0.09507662, 0.19699717, 0.11505538, 0.04116856]
- """
-
- @prim_attr_register
- def __init__(self):
- """init BesselI1e"""
-
- def infer_shape(self, x):
- return x
-
- def infer_dtype(self, x):
- validator.check_tensor_type_same({'x': x}, mstype.number_type, self.name)
- return x
-
-
- class Inv(PrimitiveWithInfer):
- """
- Computes Inv(Reciprocal) of input tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
- Must be one of the following types: float16, float32, int32.
-
- Outputs:
- Tensor, has the same shape and data type as `input_x`.
-
- Examples:
- >>> inv = P.Inv()
- >>> input_x = Tensor(np.array([0.25, 0.4, 0.31, 0.52]), mindspore.float32)
- >>> output = inv(input_x)
- [4., 2.5, 3.2258065, 1.923077]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.float16, mstype.float32,
- mstype.int32], self.name)
- return x_dtype
-
-
- class Invert(PrimitiveWithInfer):
- """
- Flips all bits of input tensor element-wise.
-
- Inputs:
- - **input_x** (Tensor[int16], Tensor[uint16]) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
-
- Outputs:
- Tensor, has the same shape as `input_x`.
-
- Examples:
- >>> invert = P.Invert()
- >>> input_x = Tensor(np.array([25, 4, 13, 9]), mindspore.int16)
- >>> output = invert(input_x)
- [-26, -5, -14, -10]
- """
-
- @prim_attr_register
- def __init__(self):
- pass
-
- def infer_shape(self, x_shape):
- return x_shape
-
- def infer_dtype(self, x_dtype):
- validator.check_tensor_type_same({'x_dtype': x_dtype}, [mstype.int16, mstype.uint16], self.name)
- return x_dtype
-
-
- class Eps(PrimitiveWithInfer):
- """
- Creates a tensor filled with `input_x` dtype minimum val.
-
- Inputs:
- - **input_x** (Tensor) - Input tensor. The data type must be float16 or float32.
-
- Outputs:
- Tensor, has the same type and shape as `input_x`, but filled with `input_x` dtype minimum val.
-
- Examples:
- >>> out = P.Eps()(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init Eps"""
- self.init_prim_io_names(inputs=['input_x'], outputs=['y'])
-
- def __infer__(self, input_x):
- valid_types = [mstype.float16, mstype.float32]
- validator.check_tensor_type_same({'input_x': input_x['dtype']}, valid_types, self.name)
-
- x_nptype = mstype.dtype_to_nptype(input_x['dtype'].element_type())
- if x_nptype == np.float16:
- min_val = 2 ** (-14)
- else:
- min_val = 2 ** (-16)
-
- res = np.full(input_x['shape'], min_val, x_nptype)
- out = {
- 'value': Tensor(res),
- 'shape': input_x['shape'],
- 'dtype': input_x['dtype'],
- }
- return out
|