|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- callbacks
- """
- import time
- from mindspore.train.callback import Callback
- from mindspore import context
- from mindspore.train import ParallelMode
-
- def add_write(file_path, out_str):
- """
- add lines to the file
- """
- with open(file_path, 'a+', encoding="utf-8") as file_out:
- file_out.write(out_str + "\n")
-
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
-
- If the loss is NAN or INF, terminate the training.
-
- Note:
- If per_print_times is 0, do NOT print loss.
-
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
- def __init__(self, config=None, per_print_times=1):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("per_print_times must be in and >= 0.")
- self._per_print_times = per_print_times
- self.config = config
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy()
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
- cur_num = cb_params.cur_step_num
- print("===loss===", cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss)
-
- # raise ValueError
- if self._per_print_times != 0 and cur_num % self._per_print_times == 0 and self.config is not None:
- loss_file = open(self.config.loss_file_name, "a+")
- loss_file.write("epoch: %s, step: %s, wide_loss: %s, deep_loss: %s" %
- (cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss))
- loss_file.write("\n")
- loss_file.close()
- print("epoch: %s, step: %s, wide_loss: %s, deep_loss: %s" %
- (cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss))
-
-
- class EvalCallBack(Callback):
- """
- Monitor the loss in evaluating.
-
- If the loss is NAN or INF, terminate evaluating.
-
- Note:
- If per_print_times is 0, do NOT print loss.
-
- Args:
- print_per_step (int): Print loss every times. Default: 1.
- """
- def __init__(self, model, eval_dataset, auc_metric, config, print_per_step=1):
- super(EvalCallBack, self).__init__()
- if not isinstance(print_per_step, int) or print_per_step < 0:
- raise ValueError("print_per_step must be int and >= 0.")
- self.print_per_step = print_per_step
- self.model = model
- self.eval_dataset = eval_dataset
- self.aucMetric = auc_metric
- self.aucMetric.clear()
- self.eval_file_name = config.eval_file_name
- self.eval_values = []
-
- def epoch_end(self, run_context):
- """
- epoch end
- """
- self.aucMetric.clear()
- parallel_mode = context.get_auto_parallel_context("parallel_mode")
- if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
- context.set_auto_parallel_context(strategy_ckpt_save_file="",
- strategy_ckpt_load_file="./strategy_train.ckpt")
- start_time = time.time()
- out = self.model.eval(self.eval_dataset)
- end_time = time.time()
- eval_time = int(end_time - start_time)
-
- time_str = time.strftime("%Y-%m-%d %H:%M%S", time.localtime())
- out_str = "{}==== EvalCallBack model.eval(): {}; eval_time: {}s".format(time_str, out.values(), eval_time)
- print(out_str)
- self.eval_values = out.values()
- add_write(self.eval_file_name, out_str)
|