|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing Pad op in DE
- """
- import numpy as np
- from util import diff_mse
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as c_vision
- import mindspore.dataset.transforms.vision.py_transforms as py_vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_pad_op():
- """
- Test Pad op
- """
- logger.info("test_random_color_jitter_op")
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c_vision.Decode()
-
- pad_op = c_vision.Pad((100, 100, 100, 100))
- ctrans = [decode_op,
- pad_op,
- ]
-
- data1 = data1.map(input_columns=["image"], operations=ctrans)
-
- # Second dataset
- transforms = [
- py_vision.Decode(),
- py_vision.Pad(100),
- py_vision.ToTensor(),
- ]
- transform = py_vision.ComposeOp(transforms)
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=transform())
-
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- c_image = item1["image"]
- py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
-
- logger.info("shape of c_image: {}".format(c_image.shape))
- logger.info("shape of py_image: {}".format(py_image.shape))
-
- logger.info("dtype of c_image: {}".format(c_image.dtype))
- logger.info("dtype of py_image: {}".format(py_image.dtype))
-
- mse = diff_mse(c_image, py_image)
- logger.info("mse is {}".format(mse))
- assert mse < 0.01
-
-
- # pylint: disable=unnecessary-lambda
- def test_pad_grayscale():
- """
- Tests that the pad works for grayscale images
- """
-
- def channel_swap(image):
- """
- Py func hack for our pytransforms to work with c transforms
- """
- return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
-
- transforms = [
- py_vision.Decode(),
- py_vision.Grayscale(1),
- py_vision.ToTensor(),
- (lambda image: channel_swap(image))
- ]
-
- transform = py_vision.ComposeOp(transforms)
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=transform())
-
- # if input is grayscale, the output dimensions should be single channel
- pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20))
- data1 = data1.map(input_columns=["image"], operations=pad_gray)
- dataset_shape_1 = []
- for item1 in data1.create_dict_iterator():
- c_image = item1["image"]
- dataset_shape_1.append(c_image.shape)
-
- # Dataset for comparison
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = c_vision.Decode()
-
- # we use the same padding logic
- ctrans = [decode_op, pad_gray]
- dataset_shape_2 = []
-
- data2 = data2.map(input_columns=["image"], operations=ctrans)
-
- for item2 in data2.create_dict_iterator():
- c_image = item2["image"]
- dataset_shape_2.append(c_image.shape)
-
- for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2):
- # validate that the first two dimensions are the same
- # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale
- assert shape1[0:1] == shape2[0:1]
-
-
- if __name__ == "__main__":
- test_pad_op()
- test_pad_grayscale()
|