|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- import numpy as np
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def normalize_np(image):
- """
- Apply the normalization
- """
- # DE decodes the image in RGB by deafult, hence
- # the values here are in RGB
- image = np.array(image, np.float32)
- image = image - np.array([121.0, 115.0, 100.0])
- image = image * (1.0 / np.array([70.0, 68.0, 71.0]))
- return image
-
-
- # pylint: disable=inconsistent-return-statements
- def get_normalized(image_id):
- """
- Reads the image using DE ops and then normalizes using Numpy
- """
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- decode_op = vision.Decode()
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- num_iter = 0
- for item in data1.create_dict_iterator():
- image = item["image"]
- if num_iter == image_id:
- return normalize_np(image)
- num_iter += 1
- return None
-
-
- def test_normalize_op():
- """
- Test Normalize
- """
- logger.info("Test Normalize")
-
- # define map operations
- decode_op = vision.Decode()
- normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
-
- # First dataset
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=normalize_op)
-
- # Second dataset
- data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
- data2 = data2.map(input_columns=["image"], operations=decode_op)
-
- num_iter = 0
- for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
- image_de_normalized = item1["image"]
- image_np_normalized = normalize_np(item2["image"])
- diff = image_de_normalized - image_np_normalized
- mse = np.sum(np.power(diff, 2))
- logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
- assert mse < 0.01
- # Uncomment these blocks to see visual results
- # plt.subplot(131)
- # plt.imshow(image_de_normalized)
- # plt.title("DE normalize image")
- #
- # plt.subplot(132)
- # plt.imshow(image_np_normalized)
- # plt.title("Numpy normalized image")
- #
- # plt.subplot(133)
- # plt.imshow(diff)
- # plt.title("Difference image, mse : {}".format(mse))
- #
- # plt.show()
- num_iter += 1
-
-
- def test_decode_op():
- logger.info("Test Decode")
-
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
- shuffle=False)
-
- # define map operations
- decode_op = vision.Decode()
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=decode_op)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- logger.info("Looping inside iterator {}".format(num_iter))
- _ = item["image"]
- # plt.subplot(131)
- # plt.imshow(image)
- # plt.title("DE image")
- # plt.show()
- num_iter += 1
-
-
- def test_decode_normalize_op():
- logger.info("Test [Decode, Normalize] in one Map")
-
- data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
- shuffle=False)
-
- # define map operations
- decode_op = vision.Decode()
- normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
-
- # apply map operations on images
- data1 = data1.map(input_columns=["image"], operations=[decode_op, normalize_op])
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- logger.info("Looping inside iterator {}".format(num_iter))
- _ = item["image"]
- # plt.subplot(131)
- # plt.imshow(image)
- # plt.title("DE image")
- # plt.show()
- num_iter += 1
-
-
- if __name__ == "__main__":
- test_decode_op()
- test_decode_normalize_op()
- test_normalize_op()
|