|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- from mindspore.common.api import _executor
- from mindspore.context import set_auto_parallel_context
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x):
- predict = self.network(x)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x):
- return grad_all(self.network)(x)
-
-
- def compile_net(net, x):
- net.set_auto_parallel()
- net.set_train()
- _executor.compile(net, x)
-
-
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5):
- super().__init__()
- self.query_w = Parameter(initializer(
- "normal", [8, 16], ms.float32), name='query')
- self.query = P.MatMul().shard(strategy1)
-
- self.key_w = Parameter(initializer(
- "normal", [8, 16], ms.float32), name='key')
- self.key = P.MatMul().shard(strategy2)
-
- self.value_w = Parameter(initializer(
- "normal", [8, 16], ms.float32), name='value')
- self.value = P.MatMul().shard(strategy3)
-
- self.score = P.MatMul().shard(strategy4)
- self.context = P.MatMul().shard(strategy5)
- self.transpose1 = P.Transpose()
- self.transpose2 = P.Transpose()
- self.relu = P.ReLU()
-
- def construct(self, x):
- q = self.query(x, self.query_w)
- k = self.key(x, self.key_w)
- v = self.value(x, self.value_w)
-
- k = self.transpose1(k, (1, 0))
- s = self.score(q, k)
-
- v = self.transpose2(v, (1, 0))
- c = self.context(v, s)
- out = self.relu(c)
-
- return out
-
-
- def test_self_attention_standalone():
- set_auto_parallel_context(device_num=8, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="stand_alone")
- net = GradWrap(NetWithLoss(
- Net(None, None, None, None, None)))
-
- x = Tensor(np.ones([32, 8]), dtype=ms.float32)
-
- compile_net(net, x)
-
-
- def test_self_attention_semi():
- set_auto_parallel_context(device_num=8, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- strategy1 = ((2, 2), (2, 2))
- strategy2 = ((2, 2), (2, 2))
- strategy3 = ((2, 2), (2, 2))
- strategy4 = ((2, 4), (4, 1))
- strategy5 = ((2, 1), (1, 4))
-
- net = GradWrap(NetWithLoss(
- Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
-
- x = Tensor(np.ones([32, 8]), dtype=ms.float32)
-
- compile_net(net, x)
-
-
- def test_self_attention_dp():
- set_auto_parallel_context(device_num=8, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
-
- strategy1 = ((8, 1), (1, 1))
- strategy2 = ((8, 1), (1, 1))
- strategy3 = ((8, 1), (1, 1))
- strategy4 = ((8, 1), (1, 1))
- strategy5 = ((8, 1), (1, 1))
-
- net = GradWrap(NetWithLoss(
- Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
-
- x = Tensor(np.ones([32, 8]), dtype=ms.float32)
-
- compile_net(net, x)
-
-
- def test_self_attention_auto():
- set_auto_parallel_context(device_num=8, global_rank=0)
- context.set_auto_parallel_context(parallel_mode="auto_parallel")
- net = GradWrap(NetWithLoss(
- Net(None, None, None, None, None)))
-
- x = Tensor(np.ones([32, 8]), dtype=ms.float32)
-
- compile_net(net, x)
|