|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore as ms
- from mindspore import context, Tensor, Parameter
- from mindspore.common.api import _executor
- from mindspore.nn import Cell, TrainOneStepCell, Momentum
- from mindspore.ops import operations as P
-
- class Net(Cell):
- def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True):
- super().__init__()
- self.concat = P.Concat(axis=0).shard(strategy1)
- if is_parameter:
- self.weight = Parameter(weight, "w1")
- else:
- self.weight = weight
- self.mul = P.Mul().shard(strategy2)
- self.weight2 = Parameter(weight2, "w2")
-
- def construct(self, x, b):
- out = self.concat((self.weight, self.weight2))
- out = self.mul(x, out)
- return out
-
-
- class Net2(Cell):
- def __init__(self, weight, strategy1=None, strategy2=None, axis=0):
- super().__init__()
- self.mul = P.Mul().shard(strategy1)
- self.concat = P.Concat(axis=axis).shard(strategy2)
- self.weight = Parameter(weight, "w")
-
- def construct(self, x, b):
- out = self.mul(x, b)
- out = self.concat((out, self.weight))
- return out
-
-
- class Net3(Cell):
- def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True):
- super().__init__()
- self.concat = P.Concat(axis=0).shard(strategy1)
- if is_parameter:
- self.weight = Parameter(weight, "w1")
- else:
- self.weight = weight
- self.mul = P.Mul().shard(strategy2)
- self.weight2 = Parameter(weight2, "w2")
- self.weight3 = Parameter(weight3, "w3")
-
- def construct(self, x, b):
- out = self.concat((self.weight, self.weight2, self.weight3))
- out = self.mul(x, out)
- return out
-
-
- _x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
- _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
- _w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32)
- _w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32)
- _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
-
- w1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
- w2 = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
- w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
-
-
- def compile_net(net):
- context.set_context(save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x, _b)
- context.reset_auto_parallel_context()
-
-
- def test_concat_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 4, 2), (1, 4, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
- compile_net(net)
-
-
- def test_concat_parameter_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 2, 2), (1, 2, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
- compile_net(net)
-
-
- def test_concat_tensor_and_parameter():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((1, 2, 2), (1, 2, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False)
- compile_net(net)
-
-
- def test_concat_output():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 2, 2), (2, 2, 2))
- strategy2 = ((1, 4, 2), (1, 4, 2))
- net = Net2(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_concat_output_no_full_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 2, 2), (2, 2, 2))
- strategy2 = ((1, 2, 2), (1, 2, 2))
- net = Net2(_w1, strategy1, strategy2)
- compile_net(net)
-
-
- def test_concat_no_strategy():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 2, 2), (2, 2, 2))
- strategy2 = None
- net = Net2(_w3, strategy1, strategy2, axis=1)
- compile_net(net)
-
-
- def test_concat_auto_parallel():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net2(_w2)
- compile_net(net)
-
-
- def test_concat_auto_parallel2():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- strategy1 = None
- strategy2 = None
- net = Net2(_w3, strategy1, strategy2, axis=1)
- compile_net(net)
-
-
- def test_concat_auto_parallel_3_tensor():
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
- net = Net3(w1, w2, w3)
- compile_net(net)
|