|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops.operations import _inner_ops as inner
- from mindspore.common.parameter import Parameter
- from mindspore.common.initializer import initializer
-
-
- class NetConv2d(nn.Cell):
- def __init__(self):
- super(NetConv2d, self).__init__()
- out_channel = 2
- kernel_size = 1
- self.conv = P.Conv2D(out_channel,
- kernel_size,
- mode=1,
- pad_mode="valid",
- pad=0,
- stride=1,
- dilation=1,
- group=1)
-
- def construct(self, x, w):
- return self.conv(x, w)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv2d():
- x = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
- w = Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32))
- expect = np.array([[[[45, 48, 51],
- [54, 57, 60],
- [63, 66, 69]],
- [[126, 138, 150],
- [162, 174, 186],
- [198, 210, 222]]]]).astype(np.float32)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", max_device_memory="0.2GB")
- conv2d = NetConv2d()
- output = conv2d(x, w)
- assert (output.asnumpy() == expect).all()
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- conv2d = NetConv2d()
- output = conv2d(x, w)
- assert (output.asnumpy() == expect).all()
-
-
- class NetConv(nn.Cell):
- def __init__(self, weight, x):
- super(NetConv, self).__init__()
- self.conv = nn.Conv2d(in_channels=3,
- out_channels=3,
- kernel_size=(5, 3),
- stride=2,
- pad_mode='same',
- padding=(0, 0, 0, 0),
- dilation=(1, 1),
- group=1,
- has_bias=False,
- weight_init=Tensor(weight)
- )
- self.x = Parameter(initializer(Tensor(x), [1, 3, 4, 2]), name="x")
-
- def construct(self):
- return self.conv(self.x)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- weight = np.array([[[[0.38968208, 0.14398979, 0.7962463],
- [-2.1836321, -0.63823014, -0.50588065],
- [0.6660469, 0.64673275, -0.13160042],
- [1.3683757, 1.4005762, -0.37235805],
- [-0.22638111, 0.45427424, -0.10293389]],
- [[1.4985064, -0.29318333, -0.92694616],
- [1.539068, 0.8937254, -1.2598171],
- [0.9658142, -0.63945454, -0.23185322],
- [1.363089, -0.41694695, -2.2750475],
- [-0.4865508, -1.6938025, 0.609849]],
- [[1.1844803, 0.99874926, -1.9475793],
- [0.4987858, 0.5307887, -0.04226681],
- [0.4529779, -1.1960793, 0.9456575],
- [3.133675, 0.2309789, -0.29201075],
- [-0.59632736, -0.0789804, -0.69486314]]],
- [[[-0.5606142, 0.6420862, 0.2478745],
- [0.02717604, 1.5483379, -0.9373383],
- [-1.1017276, -0.259478, 1.0311872],
- [1.8387799, 0.16468556, 0.33392152],
- [-1.8781787, 1.0158662, 1.6527579]],
-
- [[0.45696944, -0.5652523, -1.5618048],
- [-0.30304828, 0.1331878, -0.36955845],
- [0.91655576, 0.66612357, 0.3068175],
- [-0.45732066, 0.8923335, 1.0542952],
- [-0.73519516, 1.0518405, -1.0273266]],
-
- [[-0.79712886, -0.26814285, 0.12779616],
- [1.0367643, -1.6180774, 0.42999932],
- [-0.81818223, -0.81502074, 0.882194],
- [0.53640485, 0.4178927, 1.6037121],
- [0.9256354, -1.1006796, 0.16614541]]],
-
- [[[-1.5216796, -1.2473261, 0.6549515],
- [0.63627815, 0.7221449, 0.02977821],
- [-0.61331123, -0.49451825, 0.33852202],
- [1.4510741, -1.3818305, -0.791747],
- [0.6989747, 0.49558765, 1.0813237]],
-
- [[-0.03969796, 0.71586496, 0.8326594],
- [-0.15443641, 1.0389746, -0.59301984],
- [0.7197836, 0.03257621, 1.8398637],
- [0.6111736, -0.16166899, -2.4869773],
- [1.3066711, -1.8003578, 0.17412892]],
-
- [[-0.31470737, -0.5938182, -1.1311078],
- [-0.99081016, 0.4005125, 0.44154453],
- [1.0876914, -2.5958562, -0.5914863],
- [1.3759689, -0.7741513, 0.19928917],
- [1.6792973, 2.2744863, -0.04308867]]]]).astype(np.float32)
- x = np.array([[[[-1.4311737, 1.015344],
- [0.04431088, -2.2886624],
- [1.4832113, 1.240908],
- [0.67040104, 0.15266363]],
-
- [[0.44226435, 1.1461105],
- [1.194218, 1.5547837],
- [0.23152256, 1.5911953],
- [0.11206784, 0.17978816]],
-
- [[-0.57803905, 0.8039611],
- [0.0823025, -0.6134477],
- [-1.4171146, 1.6269946],
- [0.48878875, 0.9117505]]]]).astype(np.float32)
- conv2d = NetConv(weight, x)
- output = conv2d()
- expected = np.array([[[[2.3498724],
- [-1.9199573]],
- [[5.376562],
- [-5.425745]],
- [[5.9105043],
- [7.469034]]]]).astype(np.float32)
- loss = np.abs(expected - output.asnumpy())
- error = 1e-4 * np.ones(loss.shape)
- assert (loss < error).all()
-
-
- class NetConv2dDynamic(nn.Cell):
- def __init__(self, axis=0, out_nums=1):
- super(NetConv2dDynamic, self).__init__()
- self.dynshape = inner.GpuConvertToDynamicShape()
- out_channel = 2
- kernel_size = 1
- self.conv = P.Conv2D(out_channel,
- kernel_size,
- mode=1,
- pad_mode="valid",
- pad=0,
- stride=1,
- dilation=1,
- group=1)
-
- def construct(self, x, w):
- x_dyn = self.dynshape(x)
- w_dyn = self.dynshape(w)
- x_conv = self.conv(x_dyn, w_dyn)
- return x_conv
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv2d_dynamic():
- x1 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
- w1 = Tensor(np.arange(2 * 3 * 1 * 1).reshape(2, 3, 1, 1).astype(np.float32))
- expect1 = np.array([[[[45, 48, 51],
- [54, 57, 60],
- [63, 66, 69]],
- [[126, 138, 150],
- [162, 174, 186],
- [198, 210, 222]]]]).astype(np.float32)
-
- x2 = Tensor(np.arange(5 * 1 * 2 * 2).reshape(5, 1, 2, 2).astype(np.float32))
- w2 = Tensor(np.arange(2 * 1 * 1 * 1).reshape(2, 1, 1, 1).astype(np.float32))
- expect2 = np.array([[[[0., 0.],
- [0., 0.]],
- [[0., 1.],
- [2., 3.]]],
- [[[0., 0.],
- [0., 0.]],
- [[4., 5.],
- [6., 7.]]],
- [[[0., 0.],
- [0., 0.]],
- [[8., 9.],
- [10., 11.]]],
- [[[0., 0.],
- [0., 0.]],
- [[12., 13.],
- [14., 15.]]],
- [[[0., 0.],
- [0., 0.]],
- [[16., 17.],
- [18., 19.]]]]).astype(np.float32)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- conv2d = NetConv2dDynamic()
- output1 = conv2d(x1, w1)
- assert (output1.asnumpy() == expect1).all()
- output2 = conv2d(x2, w2)
- assert (output2.asnumpy() == expect2).all()
|