|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "transform/op_declare.h"
-
- #include <vector>
-
- #include "transform/all_ops.h"
- #include "utils/utils.h"
-
- namespace mindspore {
- namespace transform {
- #define INPUT_MAP(T) \
- template <> \
- const std::unordered_map<int, InputDesc> OpAdapter<T>::input_map_
- #define EMPTY_INPUT_MAP std::unordered_map<int, InputDesc>()
- #define INPUT_DESC(name) \
- { \
- #name, \
- [](const OperatorPtr op, const OperatorPtr input) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->set_input_##name(*input); \
- }, \
- [](const OperatorPtr op, const OutHandler& handle) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->set_input_##name(*(handle.op), handle.out); \
- }, \
- [](const OperatorPtr op, const GeTensorDesc desc) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->update_input_desc_##name(desc); \
- } \
- }
-
- #define DYN_INPUT_MAP(T) \
- template <> \
- const std::unordered_map<int, DynInputDesc> OpAdapter<T>::dyn_input_map_
- #define DYN_INPUT_DESC(name) \
- { \
- #name, \
- [](const OperatorPtr op, unsigned int num) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->create_dynamic_input_##name(num); \
- }, \
- [](const OperatorPtr op, unsigned int index, const OperatorPtr input) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->set_dynamic_input_##name(index, *input); \
- }, \
- [](const OperatorPtr op, unsigned int index, const OutHandler& handle) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->set_dynamic_input_##name(index, *(handle.op), handle.out); \
- } \
- }
-
- #define ATTR_MAP(T) \
- template <> \
- const std::unordered_map<std::string, AttrDesc> OpAdapter<T>::attr_map_
- #define EMPTY_ATTR_MAP std::unordered_map<std::string, AttrDesc>()
- #define ATTR_DESC(name, ...) \
- { \
- #name, \
- [](const OperatorPtr op, const ValuePtr& value) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->set_attr_##name(ConvertAny(value, __VA_ARGS__)); \
- } \
- }
-
- #define INPUT_ATTR_MAP(T) \
- template <> \
- const std::unordered_map<unsigned int, AttrDesc> OpAdapter<T>::input_attr_map_
-
- #define OUTPUT_MAP(T) \
- template <> \
- const std::unordered_map<int, OutputDesc> OpAdapter<T>::output_map_
- #define OUTPUT_DESC(name) \
- { \
- #name, \
- [](const OperatorPtr op, const GeTensorDesc desc) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->update_output_desc_##name(desc); \
- } \
- }
-
- #define DYN_OUTPUT_MAP(T) \
- template <> \
- const std::unordered_map<int, DynOutputDesc> OpAdapter<T>::dyn_output_map_
-
- #define DYN_OUTPUT_DESC(name) \
- { \
- #name, \
- [](const OperatorPtr op, unsigned int num) { \
- auto p = std::static_pointer_cast<OpType>(op); \
- (void)p->create_dynamic_output_##name(num); \
- } \
- }
-
- template <>
- std::unordered_map<std::string, std::unordered_map<int, std::string>> OpAdapter<ge::Operator>::cus_input_map_{};
- template <>
- std::unordered_map<std::string, std::unordered_map<int, std::string>> OpAdapter<ge::Operator>::cus_output_map_{};
-
- // --------------specialization for each operator----------
- // const
- INPUT_MAP(Const) = EMPTY_INPUT_MAP;
- ATTR_MAP(Const) = {{"value", ATTR_DESC(value, AnyTraits<AnyValue>())}};
- OUTPUT_MAP(Const) = {{0, OUTPUT_DESC(y)}};
-
- // Assign
- INPUT_MAP(Assign) = {{1, INPUT_DESC(ref)}, {2, INPUT_DESC(value)}};
- ATTR_MAP(Assign) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Assign) = {{0, OUTPUT_DESC(ref)}};
-
- // Constant
- INPUT_MAP(Constant) = EMPTY_INPUT_MAP;
- ATTR_MAP(Constant) = {{"value", ATTR_DESC(value, AnyTraits<AnyValue>())}};
- OUTPUT_MAP(Constant) = {{0, OUTPUT_DESC(y)}};
-
- // ApplyMomentum
- INPUT_MAP(ApplyMomentum) = {
- {1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(lr)}, {4, INPUT_DESC(grad)}, {5, INPUT_DESC(momentum)}};
- ATTR_MAP(ApplyMomentum) = {{"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits<bool>())},
- {"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(ApplyMomentum) = {{0, OUTPUT_DESC(var)}};
-
- // ScalarSummary
- INPUT_MAP(Summary) = {{2, INPUT_DESC(x)}};
- ATTR_MAP(Summary) = EMPTY_ATTR_MAP;
-
- // data
- INPUT_MAP(Data) = EMPTY_INPUT_MAP;
- ATTR_MAP(Data) = EMPTY_ATTR_MAP;
-
- // resnet ops in ge
- // BatchNorm
- INPUT_MAP(BatchNorm) = {{1, INPUT_DESC(x)},
- {2, INPUT_DESC(scale)},
- {3, INPUT_DESC(offset)},
- {4, INPUT_DESC(mean)},
- {5, INPUT_DESC(variance)}};
- ATTR_MAP(BatchNorm) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
- {"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())},
- {"is_training", ATTR_DESC(is_training, AnyTraits<bool>())}};
- OUTPUT_MAP(BatchNorm) = {{0, OUTPUT_DESC(y)},
- {1, OUTPUT_DESC(batch_mean)},
- {2, OUTPUT_DESC(batch_variance)},
- {3, OUTPUT_DESC(reserve_space_1)},
- {4, OUTPUT_DESC(reserve_space_2)},
- {5, OUTPUT_DESC(reserve_space_3)}};
-
- // BatchNormGrad
- INPUT_MAP(BatchNormGrad) = {{1, INPUT_DESC(y_backprop)}, {2, INPUT_DESC(x)},
- {3, INPUT_DESC(scale)}, {4, INPUT_DESC(reserve_space_1)},
- {5, INPUT_DESC(reserve_space_2)}, {6, INPUT_DESC(reserve_space_3)}};
- ATTR_MAP(BatchNormGrad) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
- {"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())},
- {"is_training", ATTR_DESC(is_training, AnyTraits<bool>())}};
- OUTPUT_MAP(BatchNormGrad) = {{0, OUTPUT_DESC(x_backprop)},
- {1, OUTPUT_DESC(scale_backprop)},
- {2, OUTPUT_DESC(offset_backprop)},
- {3, OUTPUT_DESC(reserve_space_4)},
- {4, OUTPUT_DESC(reserve_space_5)}};
-
- // Relu
- INPUT_MAP(Relu) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Relu) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Relu) = {{0, OUTPUT_DESC(y)}};
-
- // Elu
- INPUT_MAP(Elu) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Elu) = {{"alpha", ATTR_DESC(alpha, AnyTraits<float>())}};
- OUTPUT_MAP(Elu) = {{0, OUTPUT_DESC(y)}};
-
- // EluGrad
- INPUT_MAP(EluGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(activations)}};
- ATTR_MAP(EluGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(EluGrad) = {{0, OUTPUT_DESC(y)}};
-
- // PRelu
- INPUT_MAP(PRelu) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(weight)}};
- ATTR_MAP(PRelu) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(PRelu) = {{0, OUTPUT_DESC(y)}};
-
- // PReluGrad
- INPUT_MAP(PReluGrad) = {
- {1, INPUT_DESC(input_gradients)}, {2, INPUT_DESC(input_features)}, {3, INPUT_DESC(input_weights)}};
- ATTR_MAP(PReluGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(PReluGrad) = {{0, OUTPUT_DESC(output_backprops_dx)}, {1, OUTPUT_DESC(output_backprops_da)}};
-
- // Sigmoid
- INPUT_MAP(Sigmoid) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Sigmoid) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Sigmoid) = {{0, OUTPUT_DESC(y)}};
-
- // SigmoidGrad
- INPUT_MAP(SigmoidGrad) = {{1, INPUT_DESC(y)}, {2, INPUT_DESC(dy)}};
- ATTR_MAP(SigmoidGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(SigmoidGrad) = {{0, OUTPUT_DESC(z)}};
-
- // L2NormalizeGrad
- INPUT_MAP(L2NormalizeGrad) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}, {3, INPUT_DESC(dy)}};
- ATTR_MAP(L2NormalizeGrad) = {
- {"axis", ATTR_DESC(dim, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"epsilon", ATTR_DESC(eps, AnyTraits<float>())}};
- OUTPUT_MAP(L2NormalizeGrad) = {{0, OUTPUT_DESC(dx)}};
-
- // LarsV2Update
- INPUT_MAP(LarsV2Update) = {{1, INPUT_DESC(w)},
- {2, INPUT_DESC(g)},
- {3, INPUT_DESC(w_square_sum)},
- {4, INPUT_DESC(g_square_sum)},
- {5, INPUT_DESC(weight_decay)},
- {6, INPUT_DESC(learning_rate)}};
- ATTR_MAP(LarsV2Update) = {{"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())},
- {"hyperpara", ATTR_DESC(hyperpara, AnyTraits<float>())},
- {"use_clip", ATTR_DESC(use_clip, AnyTraits<bool>())}};
- OUTPUT_MAP(LarsV2Update) = {{0, OUTPUT_DESC(g_new)}};
-
- // L2Normalize
- INPUT_MAP(L2Normalize) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(L2Normalize) = {
- {"axis", ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"epsilon", ATTR_DESC(eps, AnyTraits<float>())}};
- OUTPUT_MAP(L2Normalize) = {{0, OUTPUT_DESC(y)}};
-
- // CumsumD
- INPUT_MAP(CumsumD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(CumsumD) = {{2, ATTR_DESC(axis, AnyTraits<int64_t>())}};
- ATTR_MAP(CumsumD) = {{"exclusive", ATTR_DESC(exclusive, AnyTraits<bool>())},
- {"reverse", ATTR_DESC(reverse, AnyTraits<bool>())}};
- OUTPUT_MAP(CumsumD) = {{0, OUTPUT_DESC(y)}};
-
- // softmax
- INPUT_MAP(Softmax) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Softmax) = {
- {"axis", ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(Softmax) = {{0, OUTPUT_DESC(y)}};
-
- // SoftmaxGrad
- INPUT_MAP(SoftmaxGrad) = {{1, INPUT_DESC(softmax)}, {2, INPUT_DESC(grad_softmax)}};
- OUTPUT_MAP(SoftmaxGrad) = {{0, OUTPUT_DESC(grad_x)}};
- ATTR_MAP(SoftmaxGrad) = EMPTY_ATTR_MAP;
-
- // Flatten
- INPUT_MAP(Flatten) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Flatten) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Flatten) = {{0, OUTPUT_DESC(y)}};
-
- // add
- INPUT_MAP(Add) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Add) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Add) = {{0, OUTPUT_DESC(y)}};
-
- // GatherV2
- INPUT_MAP(GatherV2) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(indices)}, {3, INPUT_DESC(axis)}};
- ATTR_MAP(GatherV2) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(GatherV2) = {{0, OUTPUT_DESC(y)}};
-
- // ReduceSum
- INPUT_MAP(ReduceSum) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(axis)}};
- ATTR_MAP(ReduceSum) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceSum) = {{0, OUTPUT_DESC(y)}};
-
- // ReduceSumD
- INPUT_MAP(ReduceSumD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(ReduceSumD) = {
- {2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ReduceSumD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceSumD) = {{0, OUTPUT_DESC(y)}};
-
- // ReduceProdD
- INPUT_MAP(ReduceProdD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(ReduceProdD) = {
- {2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ReduceProdD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceProdD) = {{0, OUTPUT_DESC(y)}};
-
- // CumprodD
- INPUT_MAP(CumprodD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(CumprodD) = {{2, ATTR_DESC(axis, AnyTraits<int64_t>())}};
- ATTR_MAP(CumprodD) = {{"exclusive", ATTR_DESC(exclusive, AnyTraits<bool>())},
- {"reverse", ATTR_DESC(reverse, AnyTraits<bool>())}};
- OUTPUT_MAP(CumprodD) = {{0, OUTPUT_DESC(y)}};
-
- // SoftmaxCrossEntropyWithLogits/
- INPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{1, INPUT_DESC(features)}, {2, INPUT_DESC(labels)}};
- ATTR_MAP(SoftmaxCrossEntropyWithLogits) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{0, OUTPUT_DESC(loss)}, {1, OUTPUT_DESC(backprop)}};
-
- // MeanGrad
- INPUT_MAP(MeanGrad) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(MeanGrad) = {{2, ATTR_DESC(mean_grad_output_shape_value, kOpFormat_NHWC,
- AnyTraits<std::vector<int64_t>>(), AnyTraits<int64_t>())}};
- ATTR_MAP(MeanGrad) = {{"mode", ATTR_DESC(mode, AnyTraits<int64_t>())}};
-
- INPUT_MAP(SliceD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(SliceD) = {{2, ATTR_DESC(begin, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {3, ATTR_DESC(size, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(SliceD) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(SliceD) = {{0, OUTPUT_DESC(y)}};
-
- // MaxPool
- INPUT_MAP(MaxPool) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(MaxPool) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())},
- {"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}};
- OUTPUT_MAP(MaxPool) = {{0, OUTPUT_DESC(y)}};
-
- // AvgPool
- INPUT_MAP(AvgPool) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(AvgPool) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())},
- {"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}};
- OUTPUT_MAP(AvgPool) = {{0, OUTPUT_DESC(y)}};
-
- // GreaterEqual
- INPUT_MAP(GreaterEqual) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(GreaterEqual) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(GreaterEqual) = {{0, OUTPUT_DESC(y)}};
-
- // AssignAdd
- INPUT_MAP(AssignAdd) = {{1, INPUT_DESC(ref)}, {2, INPUT_DESC(value)}};
- ATTR_MAP(AssignAdd) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(AssignAdd) = {{0, OUTPUT_DESC(ref)}};
-
- // AssignSub
- INPUT_MAP(AssignSub) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(value)}};
- ATTR_MAP(AssignSub) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(AssignSub) = {{0, OUTPUT_DESC(var)}};
-
- // Cos
- INPUT_MAP(Cos) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Cos) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Cos) = {{0, OUTPUT_DESC(y)}};
-
- // Acos
- INPUT_MAP(Acos) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Acos) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Acos) = {{0, OUTPUT_DESC(y)}};
-
- // AcosGrad
- INPUT_MAP(AcosGrad) = {{1, INPUT_DESC(y)}, {2, INPUT_DESC(dy)}};
- ATTR_MAP(AcosGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(AcosGrad) = {{0, OUTPUT_DESC(z)}};
-
- // Acosh
- INPUT_MAP(Acosh) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Acosh) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Acosh) = {{0, OUTPUT_DESC(y)}};
-
- // Floor
- INPUT_MAP(Floor) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Floor) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Floor) = {{0, OUTPUT_DESC(y)}};
-
- // FloorDiv
- INPUT_MAP(FloorDiv) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(FloorDiv) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(FloorDiv) = {{0, OUTPUT_DESC(y)}};
-
- // FloorMod
- INPUT_MAP(FloorMod) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(FloorMod) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(FloorMod) = {{0, OUTPUT_DESC(y)}};
-
- // Sin
- INPUT_MAP(Sin) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Sin) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Sin) = {{0, OUTPUT_DESC(y)}};
-
- // Exp
- INPUT_MAP(Exp) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Exp) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Exp) = {{0, OUTPUT_DESC(y)}};
-
- // BoundingBoxEncode
- INPUT_MAP(BoundingBoxEncode) = {
- {1, INPUT_DESC(anchor_box)},
- {2, INPUT_DESC(ground_truth_box)},
- };
- ATTR_MAP(BoundingBoxEncode) = {
- {"means", ATTR_DESC(means, AnyTraits<std::vector<float>>(), AnyTraits<float>())},
- {"stds", ATTR_DESC(stds, AnyTraits<std::vector<float>>(), AnyTraits<float>())},
- };
- OUTPUT_MAP(BoundingBoxEncode) = {{0, OUTPUT_DESC(delats)}};
-
- // BoundingBoxDecode
- INPUT_MAP(BoundingBoxDecode) = {
- {1, INPUT_DESC(rois)},
- {2, INPUT_DESC(deltas)},
- };
- ATTR_MAP(BoundingBoxDecode) = {
- {"means", ATTR_DESC(means, AnyTraits<std::vector<float>>(), AnyTraits<float>())},
- {"stds", ATTR_DESC(stds, AnyTraits<std::vector<float>>(), AnyTraits<float>())},
- {"max_shape", ATTR_DESC(max_shape, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"wh_ratio_clip", ATTR_DESC(wh_ratio_clip, AnyTraits<float>())},
- };
- OUTPUT_MAP(BoundingBoxDecode) = {{0, OUTPUT_DESC(bboxes)}};
-
- #ifdef VALID_CODE
-
- // Less
- INPUT_MAP(Less) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}};
- ATTR_MAP(Less) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Less) = {{0, OUTPUT_DESC(z)}};
-
- // Cast
- INPUT_MAP(Cast) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(Cast) = {{2, ATTR_DESC(dst_type, AnyTraits<GEType>())}};
- ATTR_MAP(Cast) = {{"Truncate", ATTR_DESC(truncate, AnyTraits<bool>())}};
- OUTPUT_MAP(Cast) = {{0, OUTPUT_DESC(y)}};
-
- // Minimum
- INPUT_MAP(Minimum) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}};
- ATTR_MAP(Minimum) = {{"alpha", ATTR_DESC(alpha, AnyTraits<float>())}, {"beta", ATTR_DESC(beta, AnyTraits<float>())}};
- OUTPUT_MAP(Minimum) = {{0, OUTPUT_DESC(z)}};
-
- // Sub
- INPUT_MAP(Sub) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Sub) = {{"alpha", ATTR_DESC(alpha, AnyTraits<float>())}, {"beta", ATTR_DESC(beta, AnyTraits<float>())}};
-
- #endif
-
- // TopKV2
- INPUT_MAP(TopKV2) = {
- {1, INPUT_DESC(input)},
- {2, INPUT_DESC(k)},
- };
-
- ATTR_MAP(TopKV2) = {{"T", ATTR_DESC(T, AnyTraits<GEType>())}, {"sorted", ATTR_DESC(sorted, AnyTraits<bool>())}};
-
- OUTPUT_MAP(TopKV2) = {
- {0, OUTPUT_DESC(values)},
- {1, OUTPUT_DESC(indices)},
- };
-
- // Multiply
- INPUT_MAP(Multiply) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}};
- ATTR_MAP(Multiply) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Multiply) = {{0, OUTPUT_DESC(z)}};
-
- // TileD
- INPUT_MAP(TileD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(TileD) = {{2, ATTR_DESC(multiples, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(TileD) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(TileD) = {{0, OUTPUT_DESC(y)}};
-
- // OneHot
- INPUT_MAP(OneHot) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(depth)}, {3, INPUT_DESC(on_value)}, {4, INPUT_DESC(off_value)}};
- ATTR_MAP(OneHot) = {{"axis", ATTR_DESC(axis, AnyTraits<int64_t>())}};
- OUTPUT_MAP(OneHot) = {{0, OUTPUT_DESC(y)}};
-
- // GatherV2D
- INPUT_MAP(GatherV2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(indices)}};
- INPUT_ATTR_MAP(GatherV2D) = {{3, ATTR_DESC(axis, AnyTraits<int64_t>())}};
- ATTR_MAP(GatherV2D) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(GatherV2D) = {{0, OUTPUT_DESC(y)}};
-
- // Reshape
- INPUT_MAP(Reshape) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(shape)}};
- ATTR_MAP(Reshape) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Reshape) = {{0, OUTPUT_DESC(y)}};
-
- // BiasAdd
- INPUT_MAP(BiasAdd) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(bias)}};
- ATTR_MAP(BiasAdd) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}};
- OUTPUT_MAP(BiasAdd) = {{0, OUTPUT_DESC(y)}};
-
- // Iou
- INPUT_MAP(Iou) = {{1, INPUT_DESC(bboxes)}, {2, INPUT_DESC(gtboxes)}};
- ATTR_MAP(Iou) = {{"mode", ATTR_DESC(mode, AnyTraits<std::string>())}};
- OUTPUT_MAP(Iou) = {{0, OUTPUT_DESC(overlap)}};
-
- // ResizeNearestNeighborD
- INPUT_MAP(ResizeNearestNeighborD) = {{1, INPUT_DESC(images)}};
- ATTR_MAP(ResizeNearestNeighborD) = {
- {"size", ATTR_DESC(size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}};
- OUTPUT_MAP(ResizeNearestNeighborD) = {{0, OUTPUT_DESC(y)}};
-
- // ResizeNearestNeighborGrad
- INPUT_MAP(ResizeNearestNeighborGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(size)}};
- ATTR_MAP(ResizeNearestNeighborGrad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}};
- OUTPUT_MAP(ResizeNearestNeighborGrad) = {{0, OUTPUT_DESC(y)}};
-
- // ApplyAdam
- INPUT_MAP(ApplyAdam) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(m)}, {3, INPUT_DESC(v)},
- {4, INPUT_DESC(beta1_power)}, {5, INPUT_DESC(beta2_power)}, {6, INPUT_DESC(lr)},
- {7, INPUT_DESC(beta1)}, {8, INPUT_DESC(beta2)}, {9, INPUT_DESC(epsilon)},
- {10, INPUT_DESC(grad)}};
- ATTR_MAP(ApplyAdam) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())},
- {"use_nesterov", ATTR_DESC(use_nesterov, AnyTraits<bool>())}};
- #ifdef ENABLE_GE
- OUTPUT_MAP(ApplyAdam) = {{0, OUTPUT_DESC(var)}, {1, OUTPUT_DESC(m)}, {2, OUTPUT_DESC(v)}};
- #else
- OUTPUT_MAP(ApplyAdam) = {{0, OUTPUT_DESC(var)}};
- #endif
-
- // Relu6
- INPUT_MAP(Relu6) = {{1, INPUT_DESC(features)}};
- ATTR_MAP(Relu6) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Relu6) = {{0, OUTPUT_DESC(activations)}};
-
- // Relu6Grad
- INPUT_MAP(Relu6Grad) = {{1, INPUT_DESC(gradients)}, {2, INPUT_DESC(features)}};
- ATTR_MAP(Relu6Grad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Relu6Grad) = {{0, OUTPUT_DESC(backprops)}};
-
- // ResizeBilinearGrad
- INPUT_MAP(ResizeBilinearGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(original_image)}};
- ATTR_MAP(ResizeBilinearGrad) = {{"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}};
- OUTPUT_MAP(ResizeBilinearGrad) = {{0, OUTPUT_DESC(y)}};
-
- // ResizeBilinear
- INPUT_MAP(ResizeBilinearD) = {{1, INPUT_DESC(images)}};
- ATTR_MAP(ResizeBilinearD) = {
- {"size", ATTR_DESC(size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"align_corners", ATTR_DESC(align_corners, AnyTraits<bool>())}};
- OUTPUT_MAP(ResizeBilinearD) = {{0, OUTPUT_DESC(y)}};
-
- // ZerosLike
- INPUT_MAP(ZerosLike) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(ZerosLike) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(ZerosLike) = {{0, OUTPUT_DESC(y)}};
-
- // OnesLike
- INPUT_MAP(OnesLike) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(OnesLike) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(OnesLike) = {{0, OUTPUT_DESC(y)}};
-
- // NMSWithMask
- INPUT_MAP(NMSWithMask) = {{1, INPUT_DESC(box_scores)}};
- ATTR_MAP(NMSWithMask) = {{"iou_threshold", ATTR_DESC(iou_threshold, AnyTraits<float>())}};
- OUTPUT_MAP(NMSWithMask) = {
- {0, OUTPUT_DESC(selected_boxes)}, {1, OUTPUT_DESC(selected_idx)}, {2, OUTPUT_DESC(selected_mask)}};
-
- // Unpack
- INPUT_MAP(Unpack) = {{1, INPUT_DESC(value)}};
- ATTR_MAP(Unpack) = {{"axis", ATTR_DESC(axis, AnyTraits<int>())}, {"num", ATTR_DESC(num, AnyTraits<int>())}};
- DYN_OUTPUT_MAP(Unpack) = {{0, DYN_OUTPUT_DESC(output)}};
-
- // ScatterNdUpdate
- INPUT_MAP(ScatterNdUpdate) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(indices)}, {3, INPUT_DESC(updates)}};
- ATTR_MAP(ScatterNdUpdate) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(ScatterNdUpdate) = {{0, OUTPUT_DESC(var)}};
-
- // CheckValid
- INPUT_MAP(CheckValid) = {{1, INPUT_DESC(bbox_tensor)}, {2, INPUT_DESC(img_metas)}};
- ATTR_MAP(CheckValid) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(CheckValid) = {{0, OUTPUT_DESC(valid_tensor)}};
-
- // SmoothL1Loss
- INPUT_MAP(SmoothL1Loss) = {{1, INPUT_DESC(predict)}, {2, INPUT_DESC(label)}};
- ATTR_MAP(SmoothL1Loss) = {{"sigma", ATTR_DESC(sigma, AnyTraits<float>())}};
- OUTPUT_MAP(SmoothL1Loss) = {{0, OUTPUT_DESC(loss)}};
-
- // SmoothL1LossGrad
- INPUT_MAP(SmoothL1LossGrad) = {{1, INPUT_DESC(predict)}, {2, INPUT_DESC(label)}, {3, INPUT_DESC(dout)}};
- ATTR_MAP(SmoothL1LossGrad) = {{"sigma", ATTR_DESC(sigma, AnyTraits<float>())}};
- OUTPUT_MAP(SmoothL1LossGrad) = {{0, OUTPUT_DESC(gradient)}};
-
- // SigmoidCrossEntropyWithLogits
- INPUT_MAP(SigmoidCrossEntropyWithLogits) = {{1, INPUT_DESC(predict)}, {2, INPUT_DESC(target)}};
- ATTR_MAP(SigmoidCrossEntropyWithLogits) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(SigmoidCrossEntropyWithLogits) = {{0, OUTPUT_DESC(loss)}};
-
- // SigmoidCrossEntropyWithLogitsGrad
- INPUT_MAP(SigmoidCrossEntropyWithLogitsGrad) = {
- {1, INPUT_DESC(predict)}, {2, INPUT_DESC(target)}, {3, INPUT_DESC(dout)}};
- ATTR_MAP(SigmoidCrossEntropyWithLogitsGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(SigmoidCrossEntropyWithLogitsGrad) = {{0, OUTPUT_DESC(gradient)}};
-
- // ScatterNd
- INPUT_MAP(ScatterNdD) = {{1, INPUT_DESC(indices)}, {2, INPUT_DESC(updates)}};
- INPUT_ATTR_MAP(ScatterNdD) = {
- {3, ATTR_DESC(shape, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ScatterNdD) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(ScatterNdD) = {{0, OUTPUT_DESC(y)}};
-
- // PadD
- INPUT_MAP(PadD) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(PadD) = {{"paddings", ATTR_DESC(paddings, AnyTraits<std::vector<std::vector<int64_t>>>())}};
- OUTPUT_MAP(PadD) = {{0, OUTPUT_DESC(y)}};
-
- // MirrorPad
- INPUT_MAP(MirrorPad) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(paddings)}};
- ATTR_MAP(MirrorPad) = {{"mode", ATTR_DESC(mode, AnyTraits<std::string>())}};
- OUTPUT_MAP(MirrorPad) = {{0, OUTPUT_DESC(y)}};
-
- // MirrorPadGrad
- INPUT_MAP(MirrorPadGrad) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(paddings)}};
- ATTR_MAP(MirrorPadGrad) = {{"mode", ATTR_DESC(mode, AnyTraits<std::string>())}};
- OUTPUT_MAP(MirrorPadGrad) = {{0, OUTPUT_DESC(y)}};
-
- // GatherNd
- INPUT_MAP(GatherNd) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(GatherNd) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(GatherNd) = {{0, OUTPUT_DESC(y)}};
-
- // ROIAlign
- INPUT_MAP(ROIAlign) = {{1, INPUT_DESC(features)}, {2, INPUT_DESC(rois)}};
- OUTPUT_MAP(ROIAlign) = {{0, OUTPUT_DESC(output)}};
- ATTR_MAP(ROIAlign) = {{"pooled_height", ATTR_DESC(pooled_height, AnyTraits<int>())},
- {"pooled_width", ATTR_DESC(pooled_width, AnyTraits<int>())},
- {"spatial_scale", ATTR_DESC(spatial_scale, AnyTraits<float>())},
- {"sample_num", ATTR_DESC(sample_num, AnyTraits<int>())}};
-
- // ROIAlignGrad
- INPUT_MAP(ROIAlignGrad) = {{1, INPUT_DESC(ydiff)}, {2, INPUT_DESC(rois)}};
- OUTPUT_MAP(ROIAlignGrad) = {{0, OUTPUT_DESC(xdiff)}};
- ATTR_MAP(ROIAlignGrad) = {
- {"xdiff_shape", ATTR_DESC(xdiff_shape, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"pooled_height", ATTR_DESC(pooled_height, AnyTraits<int>())},
- {"pooled_width", ATTR_DESC(pooled_width, AnyTraits<int>())},
- {"spatial_scale", ATTR_DESC(spatial_scale, AnyTraits<float>())},
- {"sample_num", ATTR_DESC(sample_num, AnyTraits<int>())}};
-
- // ArgMaxD
- INPUT_MAP(ArgMaxD) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(ArgMaxD) = {{"axis", ATTR_DESC(dimension, AnyTraits<int>())},
- {"output_type", ATTR_DESC(output_type, AnyTraits<GEType>())}};
- OUTPUT_MAP(ArgMaxD) = {{0, OUTPUT_DESC(y)}};
-
- // ArgMinD
- INPUT_MAP(ArgMinD) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(ArgMinD) = {{"axis", ATTR_DESC(dimension, AnyTraits<int>())},
- {"output_type", ATTR_DESC(output_type, AnyTraits<GEType>())}};
- OUTPUT_MAP(ArgMinD) = {{0, OUTPUT_DESC(y)}};
-
- // ArgMaxWithValue
- INPUT_MAP(ArgMaxWithValue) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(ArgMaxWithValue) = {{"axis", ATTR_DESC(dimension, AnyTraits<int>())},
- {"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ArgMaxWithValue) = {{0, OUTPUT_DESC(indice)}, {1, OUTPUT_DESC(values)}};
-
- // ArgMinWithValue
- INPUT_MAP(ArgMinWithValue) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(ArgMinWithValue) = {{"axis", ATTR_DESC(dimension, AnyTraits<int>())},
- {"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ArgMinWithValue) = {{0, OUTPUT_DESC(indice)}, {1, OUTPUT_DESC(values)}};
-
- // ReduceAll
- INPUT_MAP(ReduceAll) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(axis)}};
- ATTR_MAP(ReduceAll) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceAll) = {{0, OUTPUT_DESC(y)}};
-
- // ReduceMeanD
- INPUT_MAP(ReduceMeanD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(ReduceMeanD) = {
- {2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ReduceMeanD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceMeanD) = {{0, OUTPUT_DESC(y)}};
-
- // HCOMAllreduce
- INPUT_MAP(HcomAllReduce) = {{1, INPUT_DESC(x)}};
- OUTPUT_MAP(HcomAllReduce) = {{0, OUTPUT_DESC(y)}};
- ATTR_MAP(HcomAllReduce) = {{"op", ATTR_DESC(reduction, AnyTraits<std::string>())},
- {"group", ATTR_DESC(group, AnyTraits<std::string>())},
- {"fusion", ATTR_DESC(fusion, AnyTraits<int>())}};
-
- // HCOMBraodcast
- INPUT_MAP(HcomBroadcast) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(HcomBroadcast) = {{1, DYN_INPUT_DESC(x)}};
- DYN_OUTPUT_MAP(HcomBroadcast) = {{0, DYN_OUTPUT_DESC(y)}};
- ATTR_MAP(HcomBroadcast) = {{"root_rank", ATTR_DESC(root_rank, AnyTraits<int>())},
- {"group", ATTR_DESC(group, AnyTraits<std::string>())}};
-
- // HCOMAllreduce
- INPUT_MAP(HcomAllGather) = {{1, INPUT_DESC(x)}};
- OUTPUT_MAP(HcomAllGather) = {{0, OUTPUT_DESC(y)}};
- ATTR_MAP(HcomAllGather) = {{"group", ATTR_DESC(group, AnyTraits<std::string>())},
- {"rank_size", ATTR_DESC(rank_size, AnyTraits<int>())}};
-
- // HCOMReduceScatter
- INPUT_MAP(HcomReduceScatter) = {{1, INPUT_DESC(x)}};
- OUTPUT_MAP(HcomReduceScatter) = {{0, OUTPUT_DESC(y)}};
- ATTR_MAP(HcomReduceScatter) = {{"group", ATTR_DESC(group, AnyTraits<std::string>())},
- {"op", ATTR_DESC(reduction, AnyTraits<std::string>())},
- {"rank_size", ATTR_DESC(rank_size, AnyTraits<int>())}};
-
- // Variable
- INPUT_MAP(Variable) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Variable) = EMPTY_ATTR_MAP;
-
- // ReluGrad
- INPUT_MAP(ReluGrad) = {{1, INPUT_DESC(gradients)}, {2, INPUT_DESC(features)}};
- ATTR_MAP(ReluGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(ReluGrad) = {{0, OUTPUT_DESC(backprops)}};
-
- // FusedBatchNorm
- INPUT_MAP(FusedBatchNorm) = {
- {1, INPUT_DESC(x)}, {2, INPUT_DESC(scale)}, {3, INPUT_DESC(b)}, {4, INPUT_DESC(mean)}, {5, INPUT_DESC(variance)}};
- ATTR_MAP(FusedBatchNorm) = {{"mode", ATTR_DESC(mode, AnyTraits<int64_t>())},
- {"momentum", ATTR_DESC(moving_average_fraction, AnyTraits<float>())},
- {"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())}};
- OUTPUT_MAP(FusedBatchNorm) = {{0, OUTPUT_DESC(y)},
- {1, OUTPUT_DESC(running_mean)},
- {2, OUTPUT_DESC(running_variance)},
- {3, OUTPUT_DESC(save_mean)},
- {4, OUTPUT_DESC(save_inv_variance)}};
-
- // FusedBatchNromGrad
- INPUT_MAP(FusedBatchNormGrad) = {{1, INPUT_DESC(dy)},
- {2, INPUT_DESC(x)},
- {3, INPUT_DESC(scale)},
- {4, INPUT_DESC(save_mean)},
- {5, INPUT_DESC(save_inv_variance)}};
- ATTR_MAP(FusedBatchNormGrad) = {{"momentum", ATTR_DESC(momentum, AnyTraits<float>())},
- {"epsilon", ATTR_DESC(epsilon, AnyTraits<float>())}};
- OUTPUT_MAP(FusedBatchNormGrad) = {{0, OUTPUT_DESC(dx)}, {1, OUTPUT_DESC(bn_scale)}, {2, OUTPUT_DESC(bn_bias)}};
-
- // BiasAddGrad
- INPUT_MAP(BiasAddGrad) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(BiasAddGrad) = {{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}};
- OUTPUT_MAP(BiasAddGrad) = {{0, OUTPUT_DESC(y)}};
-
- // maxpoolgrad
- INPUT_MAP(MaxPoolGrad) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}, {3, INPUT_DESC(grad)}};
- ATTR_MAP(MaxPoolGrad) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())}};
- OUTPUT_MAP(MaxPoolGrad) = {{0, OUTPUT_DESC(y)}};
-
- // avgpoolgrad
- INPUT_MAP(AvgPoolGrad) = {{1, INPUT_DESC(orig_input_shape)}, {2, INPUT_DESC(input_grad)}};
- ATTR_MAP(AvgPoolGrad) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())},
- {"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())}};
- OUTPUT_MAP(AvgPoolGrad) = {{0, OUTPUT_DESC(out_grad)}};
-
- // MaxPoolWithArgmax
- INPUT_MAP(MaxPoolWithArgmax) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(MaxPoolWithArgmax) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())}};
- OUTPUT_MAP(MaxPoolWithArgmax) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(argmax)}};
-
- // MaxPoolGradWithArgmax
- INPUT_MAP(MaxPoolGradWithArgmax) = {
- {1, INPUT_DESC(x)},
- {2, INPUT_DESC(grad)},
- {3, INPUT_DESC(argmax)},
- };
- ATTR_MAP(MaxPoolGradWithArgmax) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
- {"padding", ATTR_DESC(padding, AnyTraits<std::string>())}};
- OUTPUT_MAP(MaxPoolGradWithArgmax) = {{0, OUTPUT_DESC(y)}};
-
- // Conv2D
- INPUT_MAP(Conv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
- ATTR_MAP(Conv2D) = {
- {"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
- {"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(Conv2D) = {{0, OUTPUT_DESC(y)}};
-
- // Conv2DBackpropInputD
- INPUT_MAP(Conv2DBackpropInputD) = {{1, INPUT_DESC(out_backprop)}, {2, INPUT_DESC(filters)}};
- INPUT_ATTR_MAP(Conv2DBackpropInputD) = {
- {3, ATTR_DESC(input_sizes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(Conv2DBackpropInputD) = {
- {"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"stride", ATTR_DESC(strides, "strides", AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(Conv2DBackpropInputD) = {{0, OUTPUT_DESC(y)}};
-
- // Conv2DBackpropFilterD
- INPUT_MAP(Conv2DBackpropFilterD) = {{1, INPUT_DESC(out_backprop)}, {2, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(Conv2DBackpropFilterD) = {
- {3, ATTR_DESC(filter_sizes, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(Conv2DBackpropFilterD) = {
- {"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"stride", ATTR_DESC(strides, "strides", AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(Conv2DBackpropFilterD) = {{0, OUTPUT_DESC(y)}};
-
- // DepthwiseConv2D
- INPUT_MAP(DepthwiseConv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
- ATTR_MAP(DepthwiseConv2D) = {
- {"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
- {"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- {"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
- };
- OUTPUT_MAP(DepthwiseConv2D) = {{0, OUTPUT_DESC(y)}};
-
- // DepthwiseConv2DBackpropInputD
- INPUT_MAP(DepthwiseConv2DBackpropInputD) = {{2, INPUT_DESC(filter)}, {3, INPUT_DESC(out_backprop)}};
- INPUT_ATTR_MAP(DepthwiseConv2DBackpropInputD) = {
- {1, ATTR_DESC(input_size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(DepthwiseConv2DBackpropInputD) = {
- {"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
- {"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(DepthwiseConv2DBackpropInputD) = {{0, OUTPUT_DESC(input_grad)}};
-
- // DepthwiseConv2DBackpropFilterD
- INPUT_MAP(DepthwiseConv2DBackpropFilterD) = {{1, INPUT_DESC(input)}, {3, INPUT_DESC(out_backprop)}};
- INPUT_ATTR_MAP(DepthwiseConv2DBackpropFilterD) = {
- {2, ATTR_DESC(filter_size, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(DepthwiseConv2DBackpropFilterD) = {
- {"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
- {"pads", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
- {"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
- };
- OUTPUT_MAP(DepthwiseConv2DBackpropFilterD) = {{0, OUTPUT_DESC(filter_grad)}};
-
- // MatMul
- INPUT_MAP(MatMul) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(MatMul) = {{"transpose_a", ATTR_DESC(transpose_a, AnyTraits<bool>())},
- {"transpose_b", ATTR_DESC(transpose_b, AnyTraits<bool>())}};
- OUTPUT_MAP(MatMul) = {{0, OUTPUT_DESC(y)}};
-
- // Merge
- INPUT_MAP(Merge) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(Merge) = {{1, DYN_INPUT_DESC(x)}};
- ATTR_MAP(Merge) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Merge) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(value_index)}};
-
- // Switch
- INPUT_MAP(Switch) = {{1, INPUT_DESC(data)}, {2, INPUT_DESC(pred)}};
- OUTPUT_MAP(Switch) = {{0, OUTPUT_DESC(output_false)}, {1, OUTPUT_DESC(output_true)}};
- ATTR_MAP(Switch) = EMPTY_ATTR_MAP;
-
- // AddN
- INPUT_MAP(AddN) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(AddN) = {{1, DYN_INPUT_DESC(x)}};
- ATTR_MAP(AddN) = {{"n", ATTR_DESC(N, AnyTraits<int64_t>())}};
- OUTPUT_MAP(AddN) = {{0, OUTPUT_DESC(y)}};
-
- // Mul
- INPUT_MAP(Mul) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Mul) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Mul) = {{0, OUTPUT_DESC(y)}};
-
- // RealDiv
- INPUT_MAP(RealDiv) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(RealDiv) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(RealDiv) = {{0, OUTPUT_DESC(y)}};
-
- // Cast
- INPUT_MAP(Cast) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(Cast) = {{2, ATTR_DESC(dst_type, AnyTraits<GEType>())}};
- ATTR_MAP(Cast) = {{"Truncate", ATTR_DESC(truncate, AnyTraits<bool>())}};
- OUTPUT_MAP(Cast) = {{0, OUTPUT_DESC(y)}};
-
- // Reciprocal
- INPUT_MAP(Reciprocal) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Reciprocal) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Reciprocal) = {{0, OUTPUT_DESC(y)}};
-
- // Sub
- INPUT_MAP(Sub) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Sub) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Sub) = {{0, OUTPUT_DESC(y)}};
-
- // SplitD
- INPUT_MAP(SplitD) = {{1, INPUT_DESC(value)}};
- ATTR_MAP(SplitD) = {{"axis", ATTR_DESC(split_dim, AnyTraits<int>())},
- {"output_num", ATTR_DESC(num_split, AnyTraits<int>())}};
- DYN_OUTPUT_MAP(SplitD) = {{0, DYN_OUTPUT_DESC(output)}};
-
- // Neg
- INPUT_MAP(Neg) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Neg) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Neg) = {{0, OUTPUT_DESC(y)}};
-
- // Transpose
- INPUT_MAP(TransposeD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(TransposeD) = {{2, ATTR_DESC(perm, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(TransposeD) = EMPTY_ATTR_MAP;
- // Do not set Transpose operator output descriptor
-
- // DropOutGenMask
- INPUT_MAP(DropOutGenMask) = {{1, INPUT_DESC(shape)}, {2, INPUT_DESC(prob)}};
- ATTR_MAP(DropOutGenMask) = {{"seed", ATTR_DESC(seed, AnyTraits<int64_t>())},
- {"seed2", ATTR_DESC(seed2, AnyTraits<int64_t>())}};
- OUTPUT_MAP(DropOutGenMask) = {{0, OUTPUT_DESC(y)}};
-
- // Pack
- INPUT_MAP(Pack) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(Pack) = {{1, DYN_INPUT_DESC(x)}};
- ATTR_MAP(Pack) = {{"num", ATTR_DESC(N, AnyTraits<int>())}, {"axis", ATTR_DESC(axis, AnyTraits<int>())}};
- OUTPUT_MAP(Pack) = {{0, OUTPUT_DESC(y)}};
-
- // ConcatD
- INPUT_MAP(ConcatD) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(ConcatD) = {{1, DYN_INPUT_DESC(input_values)}};
- ATTR_MAP(ConcatD) = {
- {"axis", ATTR_DESC(concat_dim, AnyTraits<int>())},
- {"inputNums", ATTR_DESC(N, AnyTraits<int>())},
- };
- OUTPUT_MAP(ConcatD) = {{0, OUTPUT_DESC(output_data)}};
-
- // Less
- INPUT_MAP(Less) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Less) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Less) = {{0, OUTPUT_DESC(y)}};
-
- // Rsqrt
- INPUT_MAP(Rsqrt) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Rsqrt) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Rsqrt) = {{0, OUTPUT_DESC(y)}};
-
- // Sqrt
- INPUT_MAP(Sqrt) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Sqrt) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Sqrt) = {{0, OUTPUT_DESC(y)}};
-
- // Square
- INPUT_MAP(Square) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Square) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Square) = {{0, OUTPUT_DESC(y)}};
-
- // Tanh
- INPUT_MAP(Tanh) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Tanh) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Tanh) = {{0, OUTPUT_DESC(y)}};
-
- // TanhGrad
- INPUT_MAP(TanhGrad) = {{1, INPUT_DESC(y)}, {2, INPUT_DESC(dy)}};
- ATTR_MAP(TanhGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(TanhGrad) = {{0, OUTPUT_DESC(z)}};
-
- // ReduceMinD
- INPUT_MAP(ReduceMinD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(ReduceMinD) = {
- {2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ReduceMinD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceMinD) = {{0, OUTPUT_DESC(y)}};
-
- // ReduceMaxD
- INPUT_MAP(ReduceMaxD) = {{1, INPUT_DESC(x)}};
- INPUT_ATTR_MAP(ReduceMaxD) = {
- {2, ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- ATTR_MAP(ReduceMaxD) = {{"keep_dims", ATTR_DESC(keep_dims, AnyTraits<bool>())}};
- OUTPUT_MAP(ReduceMaxD) = {{0, OUTPUT_DESC(y)}};
-
- // Maximum
- INPUT_MAP(Maximum) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Maximum) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Maximum) = {{0, OUTPUT_DESC(y)}};
-
- // Minimum
- INPUT_MAP(Minimum) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Minimum) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Minimum) = {{0, OUTPUT_DESC(y)}};
-
- // MaximumGrad
- INPUT_MAP(MaximumGrad) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}, {3, INPUT_DESC(grads)}};
- ATTR_MAP(MaximumGrad) = {{"grad_x", ATTR_DESC(grad_x, AnyTraits<bool>())},
- {"grad_y", ATTR_DESC(grad_y, AnyTraits<bool>())}};
- OUTPUT_MAP(MaximumGrad) = {{0, OUTPUT_DESC(y1)}, {1, OUTPUT_DESC(y2)}};
-
- // MinimumGrad
- INPUT_MAP(MinimumGrad) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}, {3, INPUT_DESC(grads)}};
- ATTR_MAP(MinimumGrad) = {{"grad_x", ATTR_DESC(grad_x, AnyTraits<bool>())},
- {"grad_y", ATTR_DESC(grad_y, AnyTraits<bool>())}};
- OUTPUT_MAP(MinimumGrad) = {{0, OUTPUT_DESC(y1)}, {1, OUTPUT_DESC(y2)}};
-
- // Pow
- INPUT_MAP(Pow) = {
- {1, INPUT_DESC(x1)},
- {2, INPUT_DESC(x2)},
- };
- ATTR_MAP(Pow) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Pow) = {{0, OUTPUT_DESC(y)}};
-
- // Equal
- INPUT_MAP(Equal) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Equal) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Equal) = {{0, OUTPUT_DESC(y)}};
-
- // NotEqual
- INPUT_MAP(NotEqual) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(NotEqual) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(NotEqual) = {{0, OUTPUT_DESC(y)}};
-
- // Log
- INPUT_MAP(Log) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Log) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Log) = {{0, OUTPUT_DESC(y)}};
-
- // LogicalAnd
- INPUT_MAP(LogicalAnd) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(LogicalAnd) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(LogicalAnd) = {{0, OUTPUT_DESC(y)}};
-
- // LogicalOr
- INPUT_MAP(LogicalOr) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(LogicalOr) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(LogicalOr) = {{0, OUTPUT_DESC(y)}};
-
- // LogicalNot
- INPUT_MAP(LogicalNot) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(LogicalNot) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(LogicalNot) = {{0, OUTPUT_DESC(y)}};
-
- // Greater
- INPUT_MAP(Greater) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Greater) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Greater) = {{0, OUTPUT_DESC(y)}};
-
- // LogSoftmaxGrad
- INPUT_MAP(LogSoftmaxGrad) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(grad)}};
- ATTR_MAP(LogSoftmaxGrad) = {
- {"axis", ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- OUTPUT_MAP(LogSoftmaxGrad) = {{0, OUTPUT_DESC(y)}};
-
- // Select
- INPUT_MAP(Select) = {{1, INPUT_DESC(condition)}, {2, INPUT_DESC(x1)}, {3, INPUT_DESC(x2)}};
- ATTR_MAP(Select) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Select) = {{0, OUTPUT_DESC(y)}};
-
- // LessEqual
- INPUT_MAP(LessEqual) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(LessEqual) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(LessEqual) = {{0, OUTPUT_DESC(y)}};
-
- // LogSoftmax
- INPUT_MAP(LogSoftmax) = {{1, INPUT_DESC(logits)}};
- ATTR_MAP(LogSoftmax) = {
- {"axis", ATTR_DESC(axis, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())}};
- OUTPUT_MAP(LogSoftmax) = {{0, OUTPUT_DESC(logsoftmax)}};
-
- // RandomChoiceWithMask
- INPUT_MAP(RandomChoiceWithMask) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(RandomChoiceWithMask) = {{"count", ATTR_DESC(count, AnyTraits<int64_t>())},
- {"seed", ATTR_DESC(seed, AnyTraits<int64_t>())},
- {"seed2", ATTR_DESC(seed2, AnyTraits<int64_t>())}};
- OUTPUT_MAP(RandomChoiceWithMask) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(mask)}};
-
- // TruncatedNormal
- INPUT_MAP(TruncatedNormal) = {{1, INPUT_DESC(shape)}};
- ATTR_MAP(TruncatedNormal) = {{"seed", ATTR_DESC(seed, AnyTraits<int64_t>())},
- {"seed2", ATTR_DESC(seed2, AnyTraits<int64_t>())}};
- OUTPUT_MAP(TruncatedNormal) = {{0, OUTPUT_DESC(y)}};
-
- // StridedSliceGrad
- INPUT_MAP(StridedSliceGrad) = {
- {1, INPUT_DESC(dy)}, {2, INPUT_DESC(shape)}, {3, INPUT_DESC(begin)}, {4, INPUT_DESC(end)}, {5, INPUT_DESC(strides)}};
- ATTR_MAP(StridedSliceGrad) = {{"begin_mask", ATTR_DESC(begin_mask, AnyTraits<int64_t>())},
- {"end_mask", ATTR_DESC(end_mask, AnyTraits<int64_t>())},
- {"ellipsis_mask", ATTR_DESC(ellipsis_mask, AnyTraits<int64_t>())},
- {"new_axis_mask", ATTR_DESC(new_axis_mask, AnyTraits<int64_t>())},
- {"shrink_axis_mask", ATTR_DESC(shrink_axis_mask, AnyTraits<int64_t>())}};
- OUTPUT_MAP(StridedSliceGrad) = {{0, OUTPUT_DESC(output)}};
-
- // Gelu
- INPUT_MAP(Gelu) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Gelu) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Gelu) = {{0, OUTPUT_DESC(y)}};
-
- // GeluGrad
- INPUT_MAP(GeluGrad) = {{1, INPUT_DESC(dy)}, {2, INPUT_DESC(x)}, {3, INPUT_DESC(y)}};
- ATTR_MAP(GeluGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(GeluGrad) = {{0, OUTPUT_DESC(z)}};
-
- // StridedSlice
- INPUT_MAP(StridedSlice) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(begin)}, {3, INPUT_DESC(end)}, {4, INPUT_DESC(strides)}};
- ATTR_MAP(StridedSlice) = {{"begin_mask", ATTR_DESC(begin_mask, AnyTraits<int64_t>())},
- {"end_mask", ATTR_DESC(end_mask, AnyTraits<int64_t>())},
- {"ellipsis_mask", ATTR_DESC(ellipsis_mask, AnyTraits<int64_t>())},
- {"new_axis_mask", ATTR_DESC(new_axis_mask, AnyTraits<int64_t>())},
- {"shrink_axis_mask", ATTR_DESC(shrink_axis_mask, AnyTraits<int64_t>())}};
- OUTPUT_MAP(StridedSlice) = {{0, OUTPUT_DESC(y)}};
-
- // UnsortedSegmentSum
- INPUT_MAP(UnsortedSegmentSumD) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(segment_ids)}};
- INPUT_ATTR_MAP(UnsortedSegmentSumD) = {{3, ATTR_DESC(num_segments, AnyTraits<int64_t>())}};
- ATTR_MAP(UnsortedSegmentSumD) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(UnsortedSegmentSumD) = {{0, OUTPUT_DESC(y)}};
-
- // ExpandDims
- INPUT_MAP(ExpandDims) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(axis)}};
- ATTR_MAP(ExpandDims) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(ExpandDims) = {{0, OUTPUT_DESC(y)}};
-
- // Squeeze
- INPUT_MAP(Squeeze) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Squeeze) = {{"axis", ATTR_DESC(axis, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
- OUTPUT_MAP(Squeeze) = {{0, OUTPUT_DESC(y)}};
-
- // SGD
- INPUT_MAP(SGD) = {{1, INPUT_DESC(parameters)}, {2, INPUT_DESC(gradient)}, {3, INPUT_DESC(learning_rate)},
- {4, INPUT_DESC(accum)}, {5, INPUT_DESC(momentum)}, {6, INPUT_DESC(stat)}};
- ATTR_MAP(SGD) = {{"dampening", ATTR_DESC(dampening, AnyTraits<float>())},
- {"weight_decay", ATTR_DESC(weight_decay, AnyTraits<float>())},
- {"nesterov", ATTR_DESC(nesterov, AnyTraits<bool>())}};
- OUTPUT_MAP(SGD) = {{0, OUTPUT_DESC(parameters)}};
-
- // LayerNorm
- INPUT_MAP(LayerNorm) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(gamma)}, {3, INPUT_DESC(beta)}};
- ATTR_MAP(LayerNorm) = {{"begin_norm_axis", ATTR_DESC(begin_norm_axis, AnyTraits<int>())},
- {"begin_params_axis", ATTR_DESC(begin_params_axis, AnyTraits<int>())}};
- OUTPUT_MAP(LayerNorm) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(mean)}, {2, OUTPUT_DESC(variance)}};
-
- // LayerNormGrad
- INPUT_MAP(LayerNormGrad) = {
- {1, INPUT_DESC(x)}, {2, INPUT_DESC(dy)}, {3, INPUT_DESC(variance)}, {4, INPUT_DESC(mean)}, {5, INPUT_DESC(gamma)}};
- ATTR_MAP(LayerNormGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(LayerNormGrad) = {{0, OUTPUT_DESC(pd_x)}, {1, OUTPUT_DESC(pd_gamma)}, {2, OUTPUT_DESC(pd_beta)}};
-
- // BatchMatMul
- INPUT_MAP(BatchMatMul) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(BatchMatMul) = {{"transpose_x1", ATTR_DESC(adj_x, AnyTraits<bool>())},
- {"transpose_x2", ATTR_DESC(adj_y, AnyTraits<bool>())}};
- OUTPUT_MAP(BatchMatMul) = {{0, OUTPUT_DESC(y)}};
-
- // DropoutDoMask
- INPUT_MAP(DropOutDoMask) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(mask)}, {3, INPUT_DESC(keep_prob)}};
- ATTR_MAP(DropOutDoMask) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(DropOutDoMask) = {{0, OUTPUT_DESC(y)}};
-
- // NPUGetFloatStatus
- INPUT_MAP(NPUGetFloatStatus) = {{1, INPUT_DESC(addr)}};
- OUTPUT_MAP(NPUGetFloatStatus) = {{0, OUTPUT_DESC(data)}};
- ATTR_MAP(NPUGetFloatStatus) = EMPTY_ATTR_MAP;
-
- // NPUAllocFloatStatus
- INPUT_MAP(NPUAllocFloatStatus) = EMPTY_INPUT_MAP;
- ATTR_MAP(NPUAllocFloatStatus) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(NPUAllocFloatStatus) = {{0, OUTPUT_DESC(data)}};
-
- // NPUClearFloatStatus
- INPUT_MAP(NPUClearFloatStatus) = {{1, INPUT_DESC(addr)}};
- OUTPUT_MAP(NPUClearFloatStatus) = {{0, OUTPUT_DESC(data)}};
- ATTR_MAP(NPUClearFloatStatus) = EMPTY_ATTR_MAP;
-
- // Abs
- INPUT_MAP(Abs) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Abs) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Abs) = {{0, OUTPUT_DESC(y)}};
-
- // AbsGrad
- INPUT_MAP(AbsGrad) = {{1, INPUT_DESC(y)}, {2, INPUT_DESC(dy)}};
- ATTR_MAP(AbsGrad) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(AbsGrad) = {{0, OUTPUT_DESC(z)}};
-
- // BinaryCrossEntropy
- INPUT_MAP(BinaryCrossEntropy) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}, {3, INPUT_DESC(weight)}};
- ATTR_MAP(BinaryCrossEntropy) = {{"reduction", ATTR_DESC(reduction, AnyTraits<std::string>())}};
- OUTPUT_MAP(BinaryCrossEntropy) = {{0, OUTPUT_DESC(output)}};
-
- // BinaryCrossEntropyGrad
- INPUT_MAP(BinaryCrossEntropyGrad) = {
- {1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}, {3, INPUT_DESC(grad_output)}, {4, INPUT_DESC(weight)}};
- ATTR_MAP(BinaryCrossEntropyGrad) = {{"reduction", ATTR_DESC(reduction, AnyTraits<std::string>())}};
- OUTPUT_MAP(BinaryCrossEntropyGrad) = {{0, OUTPUT_DESC(output)}};
-
- // SparseApplyAdagradD
- INPUT_MAP(SparseApplyAdagradD) = {
- {1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(grad)}, {4, INPUT_DESC(indices)}};
- ATTR_MAP(SparseApplyAdagradD) = {{"lr", ATTR_DESC(lr, AnyTraits<float>())},
- {"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(SparseApplyAdagradD) = {{0, OUTPUT_DESC(var)}};
-
- // SpaceToDepth
- INPUT_MAP(SpaceToDepth) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(SpaceToDepth) = {{"block_size", ATTR_DESC(block_size, AnyTraits<int64_t>())}};
- OUTPUT_MAP(SpaceToDepth) = {{0, OUTPUT_DESC(y)}};
-
- // DepthToSpace
- INPUT_MAP(DepthToSpace) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(DepthToSpace) = {{"block_size", ATTR_DESC(block_size, AnyTraits<int64_t>())}};
- OUTPUT_MAP(DepthToSpace) = {{0, OUTPUT_DESC(y)}};
-
- // Sign
- INPUT_MAP(Sign) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Sign) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Sign) = {{0, OUTPUT_DESC(y)}};
-
- // Round
- INPUT_MAP(Round) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Round) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Round) = {{0, OUTPUT_DESC(y)}};
-
- // ApplyFtrl
- INPUT_MAP(ApplyFtrl) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(accum)}, {3, INPUT_DESC(linear)},
- {4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}, {6, INPUT_DESC(l1)},
- {7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}};
- ATTR_MAP(ApplyFtrl) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(ApplyFtrl) = {{0, OUTPUT_DESC(var)}};
-
- // Diag
- INPUT_MAP(Diag) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(Diag) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Diag) = {{0, OUTPUT_DESC(y)}};
-
- // DiagPart
- INPUT_MAP(DiagPart) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(DiagPart) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(DiagPart) = {{0, OUTPUT_DESC(y)}};
-
- // SpaceToBatchD
- INPUT_MAP(SpaceToBatchD) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(SpaceToBatchD) = {
- {"block_size", ATTR_DESC(block_size, AnyTraits<int64_t>())},
- {"paddings", ATTR_DESC(paddings, AnyTraits<std::vector<std::vector<int64_t>>>(), AnyTraits<std::vector<int64_t>>())}};
- OUTPUT_MAP(SpaceToBatchD) = {{0, OUTPUT_DESC(y)}};
-
- // BatchToSpaceD
- INPUT_MAP(BatchToSpaceD) = {{1, INPUT_DESC(x)}};
- ATTR_MAP(BatchToSpaceD) = {
- {"block_size", ATTR_DESC(block_size, AnyTraits<int64_t>())},
- {"crops", ATTR_DESC(crops, AnyTraits<std::vector<std::vector<int64_t>>>(), AnyTraits<std::vector<int64_t>>())}};
- OUTPUT_MAP(BatchToSpaceD) = {{0, OUTPUT_DESC(y)}};
-
- // Atan2
- INPUT_MAP(Atan2) = {{1, INPUT_DESC(x1)}, {2, INPUT_DESC(x2)}};
- ATTR_MAP(Atan2) = EMPTY_ATTR_MAP;
- OUTPUT_MAP(Atan2) = {{0, OUTPUT_DESC(y)}};
-
- // ApplyRMSPropD
- INPUT_MAP(ApplyRMSPropD) = {
- {1, INPUT_DESC(var)}, {2, INPUT_DESC(ms)}, {3, INPUT_DESC(mom)}, {4, INPUT_DESC(grad)}, {5, INPUT_DESC(lr)}};
- INPUT_ATTR_MAP(ApplyRMSPropD) = {{6, ATTR_DESC(rho, AnyTraits<float>())},
- {7, ATTR_DESC(momentum, AnyTraits<float>())},
- {8, ATTR_DESC(epsilon, AnyTraits<float>())}};
- ATTR_MAP(ApplyRMSPropD) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(ApplyRMSPropD) = {{0, OUTPUT_DESC(var)}};
-
- // ApplyCenteredRMSProp
- INPUT_MAP(ApplyCenteredRMSProp) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(mg)}, {3, INPUT_DESC(ms)},
- {4, INPUT_DESC(mom)}, {5, INPUT_DESC(grad)}, {6, INPUT_DESC(lr)},
- {7, INPUT_DESC(rho)}, {8, INPUT_DESC(momentum)}, {9, INPUT_DESC(epsilon)}};
- ATTR_MAP(ApplyCenteredRMSProp) = {{"use_locking", ATTR_DESC(use_locking, AnyTraits<bool>())}};
- OUTPUT_MAP(ApplyCenteredRMSProp) = {{0, OUTPUT_DESC(var)}};
-
- #ifdef ENABLE_GE
- // Print
- INPUT_MAP(Print) = EMPTY_INPUT_MAP;
- DYN_INPUT_MAP(Print) = {{1, DYN_INPUT_DESC(x)}};
- ATTR_MAP(Print) = EMPTY_ATTR_MAP;
- #endif
- } // namespace transform
- } // namespace mindspore
|