|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Export MobilenetV2 on ImageNet"""
-
- import argparse
- import numpy as np
-
- import mindspore
- from mindspore import Tensor
- from mindspore import context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.quant import quant
-
- from src.mobilenetV2 import mobilenetV2
- from src.config import config_ascend
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--device_target', type=str, default=None, help='Run device target')
- args_opt = parser.parse_args()
-
- if __name__ == '__main__':
- cfg = None
- if args_opt.device_target == "Ascend":
- cfg = config_ascend
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
- else:
- raise ValueError("Unsupported device target: {}.".format(args_opt.device_target))
-
- # define fusion network
- network = mobilenetV2(num_classes=cfg.num_classes)
- # convert fusion network to quantization aware network
- network = quant.convert_quant_network(network, bn_fold=True, per_channel=[True, False], symmetric=[True, False])
- # load checkpoint
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(network, param_dict)
-
- # export network
- print("============== Starting export ==============")
- inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32)
- quant.export(network, inputs, file_name="mobilenet_quant", file_format='GEIR')
- print("============== End export ==============")
|