|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """embedding"""
- import mindspore.common.dtype as mstype
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.common.parameter import Parameter
- from mindspore.common.initializer import initializer
- from ..cell import Cell
- from ..._checkparam import Validator as validator
-
- __all__ = ['Embedding', 'EmbeddingLookup']
-
- class Embedding(Cell):
- r"""
- A simple lookup table that stores embeddings of a fixed dictionary and size.
-
- This module is often used to store word embeddings and retrieve them using
- indices. The input to the module is a list of indices, and the output is
- the corresponding word embeddings.
-
- Note:
- When 'use_one_hot' is set to True, the input should be of type mindspore.int32.
-
- Args:
- vocab_size (int): Size of the dictionary of embeddings.
- embedding_size (int): The size of each embedding vector.
- use_one_hot (bool): Specifies whether to apply one_hot encoding form. Default: False.
- embedding_table (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the embedding_table.
- Refer to class `initializer` for the values of string when a string
- is specified. Default: 'normal'.
- dtype (:class:`mindspore.dtype`): Data type of input. Default: mindspore.float32.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(\text{batch_size}, \text{input_length})`. The element of
- the Tensor should be integer and not larger than vocab_size. else the corresponding embedding vector is zero
- if larger than vocab_size.
-
- Outputs:
- Tensor of shape :math:`(\text{batch_size}, \text{input_length}, \text{embedding_size})`.
-
- Examples:
- >>> net = nn.Embedding(20000, 768, True)
- >>> input_data = Tensor(np.ones([8, 128]), mindspore.int32)
- >>>
- >>> # Maps the input word IDs to word embedding.
- >>> output = net(input_data)
- >>> output.shape
- (8, 128, 768)
- """
- def __init__(self, vocab_size, embedding_size, use_one_hot=False, embedding_table='normal', dtype=mstype.float32):
- super(Embedding, self).__init__()
- validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
- validator.check_value_type('use_one_hot', use_one_hot, [bool], self.cls_name)
- self.vocab_size = vocab_size
- self.embedding_size = embedding_size
- self.use_one_hot = use_one_hot
- self.embedding_table = Parameter(initializer(embedding_table, [vocab_size, embedding_size]),
- name='embedding_table')
- self.dtype = dtype
- self.expand = P.ExpandDims()
- self.reshape_flat = P.Reshape()
- self.shp_flat = (-1,)
- self.gather = P.GatherV2()
- self.one_hot = P.OneHot()
- self.on_value = Tensor(1.0, self.dtype)
- self.off_value = Tensor(0.0, self.dtype)
- self.array_mul = P.MatMul()
- self.reshape = P.Reshape()
- self.get_shp = P.Shape()
-
- def construct(self, ids):
- extended_ids = self.expand(ids, -1)
- out_shape = self.get_shp(ids) + (self.embedding_size,)
- flat_ids = self.reshape_flat(extended_ids, self.shp_flat)
-
- if self.use_one_hot:
- one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value)
- output_for_reshape = self.array_mul(one_hot_ids, self.embedding_table)
- else:
- output_for_reshape = self.gather(self.embedding_table, flat_ids, 0)
-
- output = self.reshape(output_for_reshape, out_shape)
- return output
-
- def extend_repr(self):
- s = 'vocab_size={}, embedding_size={},' \
- 'use_one_hot={}, ' \
- 'embedding_table={}, dtype={}'.format(
- self.vocab_size,
- self.embedding_size,
- self.use_one_hot,
- self.embedding_table,
- self.dtype)
- return s
-
- class EmbeddingLookup(Cell):
- r"""
- Returns a slice of input tensor based on the specified indices.
-
- Note:
- When 'target' is set to 'CPU', this module will use
- P.EmbeddingLookup().add_prim_attr('primitive_target', 'CPU') which
- specified 'offset = 0' to lookup table.
- when 'target' is set to 'DEVICE', this module will use P.GatherV2() which
- specified 'axis = 0' to lookup table.
-
- Args:
- target (str): Specify the target where the op is executed. Default: 'CPU'.
-
- Inputs:
- - **input_params** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
- The Tensor slice, instead of the entire Tensor.
- - **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
- Specifies the indices of elements of the original Tensor. Values can be out of range of `input_params`,
- and the exceeding part will be filled with 0 in the output.
-
- Outputs:
- Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
-
- Examples:
- >>> input_params = Tensor(np.array([[8, 9], [10, 11], [12, 13], [14, 15]]), mindspore.float32)
- >>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32)
- >>> out = nn.EmbeddingLookup()(input_params, input_indices)
- [[[10, 11], [8 ,9]], [[14, 15], [12, 13]]]
- """
- def __init__(self, target='CPU'):
- super(EmbeddingLookup, self).__init__()
- self.target = target
- if target not in ('CPU', 'DEVICE'):
- raise ValueError('Attr \'target\' of \'EmbeddingLookup\' Op passed '
- + str(target) + ', should be one of values in \'CPU\', \'DEVICE\'.')
- self.gatherv2 = P.GatherV2()
- self.embeddinglookup = P.EmbeddingLookup().add_prim_attr('primitive_target', 'CPU')
-
- def construct(self, params, indices):
- if self.target == "CPU":
- out = self.embeddinglookup(params, indices, 0)
- else:
- out = self.gatherv2(params, indices, 0)
- return out
|