|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "frontend/parallel/context.h"
-
- #include <algorithm>
- #include <cstdint>
- #include <functional>
- #include <memory>
- #include <numeric>
- #include <utility>
- #include <map>
-
- #include "common/utils.h"
- #include "frontend/parallel/device_manager.h"
-
- namespace mindspore {
- namespace parallel {
- static std::map<std::string, Shape> param_shapes;
-
- std::vector<std::string> PARALLEL_MODE_LIST = {STAND_ALONE, DATA_PARALLEL, HYBRID_PARALLEL, SEMI_AUTO_PARALLEL,
- AUTO_PARALLEL};
- std::vector<std::string> STRATEGY_SEARCH_MODE_LIST = {DYNAMIC_PROGRAMMING, RECURSIVE_PROGRAMMING};
-
- std::shared_ptr<ParallelContext> ParallelContext::inst_context_ = nullptr;
-
- std::shared_ptr<ParallelContext> ParallelContext::GetInstance() {
- if (inst_context_ == nullptr) {
- inst_context_.reset(new (std::nothrow) ParallelContext());
- }
- return inst_context_;
- }
-
- ParallelContext::ParallelContext() {
- communication_backend_ = HCCL_BACKEND;
- Reset();
- }
-
- void ParallelContext::Reset() {
- mirror_mean_ = false;
- full_batch_ = false;
- cast_before_mirror_ = true;
- loss_repeated_mean_ = true;
- device_num_ = 1;
- global_rank_ = 0;
- device_num_is_set_ = false;
- global_rank_is_set_ = false;
- parallel_mode_ = STAND_ALONE;
- parameter_broadcast_ = false;
- parameter_broadcast_is_set_ = false;
- enable_all_reduce_fusion_ = false;
- strategy_ckpt_load_file_ = "";
- strategy_ckpt_save_file_ = "";
- enable_parallel_optimizer_ = false;
- all_reduce_fusion_split_indices_.clear();
- all_reduce_fusion_split_sizes_.clear();
- }
-
- void ParallelContext::set_device_num(int32_t device_num) {
- device_num_ = device_num;
- device_num_is_set_ = true;
- }
-
- void ParallelContext::set_global_rank(int32_t global_rank) {
- global_rank_ = global_rank;
- global_rank_is_set_ = true;
- }
-
- void ParallelContext::set_mirror_mean(bool mirror_mean) { mirror_mean_ = mirror_mean; }
-
- void ParallelContext::set_full_batch(bool full_batch) { full_batch_ = full_batch; }
-
- void ParallelContext::set_cast_before_mirror(bool cast_before_mirror) { cast_before_mirror_ = cast_before_mirror; }
-
- void ParallelContext::set_loss_repeated_mean(bool loss_repeated_mean) { loss_repeated_mean_ = loss_repeated_mean; }
-
- void ParallelContext::set_communication_backend(const std::string &communication_backend) {
- communication_backend_ = communication_backend;
- }
-
- bool ParallelContext::set_parallel_mode(const std::string ¶llel_mode) {
- auto iter = std::find(PARALLEL_MODE_LIST.begin(), PARALLEL_MODE_LIST.end(), parallel_mode);
- if (iter == PARALLEL_MODE_LIST.end()) {
- MS_LOG(INFO) << "Invalid parallel mode:" << parallel_mode;
- return false;
- }
- parallel_mode_ = parallel_mode;
- return true;
- }
-
- bool ParallelContext::set_strategy_search_mode(const std::string &strategy_search_mode) {
- auto iter = std::find(STRATEGY_SEARCH_MODE_LIST.begin(), STRATEGY_SEARCH_MODE_LIST.end(), strategy_search_mode);
- if (iter == STRATEGY_SEARCH_MODE_LIST.end()) {
- MS_LOG(INFO) << "Invalid strategy search mode mode: " << strategy_search_mode;
- return false;
- }
- strategy_search_mode_ = strategy_search_mode;
- return true;
- }
-
- void ParallelContext::set_parameter_broadcast(bool parameter_broadcast) {
- parameter_broadcast_ = parameter_broadcast;
- parameter_broadcast_is_set_ = true;
- }
-
- void ParallelContext::set_strategy_ckpt_load_file(const std::string &strategy_ckpt_load_file) {
- strategy_ckpt_load_file_ = strategy_ckpt_load_file;
- }
-
- void ParallelContext::set_strategy_ckpt_save_file(const std::string &strategy_ckpt_save_file) {
- strategy_ckpt_save_file_ = strategy_ckpt_save_file;
- }
-
- void ParallelContext::SetAllReduceFusionSplitIndices(const std::vector<uint32_t> indices, const std::string &group) {
- all_reduce_fusion_split_indices_[group] = indices;
- }
-
- const std::vector<uint32_t> ParallelContext::GetAllReduceFusionSplitIndices(const std::string &group) const {
- auto iter = all_reduce_fusion_split_indices_.find(group);
- if (iter != all_reduce_fusion_split_indices_.end()) {
- return iter->second;
- }
- return {};
- }
-
- void ParallelContext::SetAllReduceFusionSplitSizes(const std::vector<uint32_t> sizes, const std::string &group) {
- all_reduce_fusion_split_sizes_[group] = sizes;
- }
-
- const std::vector<uint32_t> ParallelContext::GetAllReduceFusionSplitSizes(const std::string &group) const {
- auto iter = all_reduce_fusion_split_sizes_.find(group);
- if (iter != all_reduce_fusion_split_sizes_.end()) {
- return iter->second;
- }
- return {};
- }
-
- // Clear param_shapes before training in auto-parallel or semi-auto-parallel mode
- void ParallelParameterContextInit(const FuncGraphPtr &func_graph) {
- MS_EXCEPTION_IF_NULL(func_graph);
- if (!func_graph->has_flag(AUTO_PARALLEL) || !func_graph->has_flag(TRAINING)) {
- return;
- }
- param_shapes.clear();
- }
-
- // Restore the parameters' shape for evaluation/prediction in auto-parallel or semi-auto-parallel mode
- void ParallelParameterContextRestoreInNoTraining(const FuncGraphPtr &func_graph, const ParameterPtr ¶m_node,
- AbstractBasePtr ptr) {
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_EXCEPTION_IF_NULL(param_node);
- MS_EXCEPTION_IF_NULL(ptr);
- if (!func_graph->has_flag(AUTO_PARALLEL) || (func_graph->attrs().count(TRAINING) == 0) ||
- func_graph->has_flag(TRAINING)) {
- return;
- }
-
- auto iter = param_shapes.find(param_node->name());
- if (iter == param_shapes.end()) {
- MS_LOG(WARNING) << "Can not found the shape for parameter " << param_node->name();
- return;
- }
- Shape shape = iter->second;
- std::shared_ptr<abstract::BaseShape> base_shape = std::make_shared<abstract::Shape>(shape);
- ptr->set_shape(base_shape);
- MS_LOG(DEBUG) << "The parameter name is " << param_node->name() << ", the shape is " << shape;
- }
-
- // Checkpoint the parameters' shape for training in auto-parallel or semi-auto-parallel mode
- void ParallelParameterContextCkptInTraining(const FuncGraphPtr &func_graph, const ParameterPtr ¶m_node,
- const AbstractBasePtr &ptr) {
- MS_EXCEPTION_IF_NULL(func_graph);
- MS_EXCEPTION_IF_NULL(param_node);
- MS_EXCEPTION_IF_NULL(ptr);
- if (!func_graph->has_flag(AUTO_PARALLEL) || !func_graph->has_flag(TRAINING)) {
- return;
- }
-
- std::vector<int> shape_int = dyn_cast<abstract::Shape>(ptr->GetShapeTrack())->shape();
- Shape shape;
- (void)std::transform(shape_int.begin(), shape_int.end(), std::back_inserter(shape),
- [](const int &value) { return static_cast<int64_t>(value); });
- auto ret = param_shapes.try_emplace(param_node->name(), shape);
- if (!ret.second) {
- MS_LOG(EXCEPTION) << "The shape for parameter name " << param_node->name() << " is existed";
- return;
- }
-
- MS_LOG(DEBUG) << "The parameter name is " << param_node->name() << ", the shape is " << shape;
- }
- } // namespace parallel
- } // namespace mindspore
|