|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """sgd"""
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.common.parameter import Parameter
- from mindspore._checkparam import ParamValidator as validator
- from .optimizer import Optimizer
-
- sgd_opt = C.MultitypeFuncGraph("sgd_opt")
-
-
- @sgd_opt.register("Function", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt(opt, learning_rate, momentum, gradient, weight, accum, stat):
- """Apply sgd optimizer to the weight parameter."""
- success = True
- success = F.depend(success, opt(weight, gradient, learning_rate, accum, momentum, stat))
- return success
-
-
- @sgd_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt_ext(opt, learning_rate, momentum, gradient, weight, accum, stat):
- """Apply sgd optimizer to the weight parameter using Tensor."""
- success = True
- success = F.depend(success, opt(weight, gradient, learning_rate, accum, momentum, stat))
- return success
-
-
- @sgd_opt.register("Function", "Tensor", "Number", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt_dyn(opt, learning_rate, momentum, gradient, weight, accum, stat):
- """Apply sgd optimizer to the weight parameter using dynamic learning rate."""
- success = True
- success = F.depend(success, opt(weight, gradient, learning_rate, accum, momentum, stat))
- return success
-
-
- class SGD(Optimizer):
- """
- Implements stochastic gradient descent (optionally with momentum).
-
- Introduction to SGD can be found at https://en.wikipedia.org/wiki/Stochastic_gradient_descent.
- Nesterov momentum is based on the formula from paper `On the importance of initialization and
- momentum in deep learning <http://proceedings.mlr.press/v28/sutskever13.html>`_.
-
- Args:
- params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
- should be class mindspore.Parameter.
- learning_rate (float): A floating point value for the learning rate. Default: 0.1.
- momentum (float): A floating point value the momentum. Default: 0.
- dampening (float): A floating point value of dampening for momentum. Default: 0.
- weight_decay (float): Weight decay (L2 penalty). Default: 0.
- nesterov (bool): Enables the Nesterov momentum. Default: False.
- loss_scale (float): A floating point value for the loss scale. Default: 1.0.
-
- Inputs:
- - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
-
- Outputs:
- Tensor[bool], the value is True.
-
- Raises:
- ValueError: If the momentum, dampening or weight_decay value is less than 0.0.
-
- Examples:
- >>> net = Net()
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> optim = nn.SGD(params=net.trainable_params())
- >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
- """
- def __init__(self, params, learning_rate=0.1, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False,
- loss_scale=1.0):
-
- super(SGD, self).__init__(learning_rate, params, weight_decay, loss_scale)
-
- if isinstance(momentum, float) and momentum < 0.0:
- raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum))
-
- if dampening < 0.0:
- raise ValueError("dampening should be at least 0.0, but got dampening {}".format(dampening))
- self.dampening = dampening
-
- validator.check_type("nesterov", nesterov, [bool])
- self.nesterov = nesterov
-
- self.opt = P.SGD(dampening, weight_decay, nesterov)
-
- self.momentum = Parameter(momentum, name="momentum")
- self.accum = self.parameters.clone(prefix="accum", init='zeros')
- self.stat = self.parameters.clone(prefix="stat", init='ones')
- self.hyper_map = C.HyperMap()
-
- def construct(self, gradients):
- params = self.parameters
- accum = self.accum
- stat = self.stat
- gradients = self.decay_weight(gradients)
- gradients = self.scale_grad(gradients)
- lr = self.get_lr()
- success = self.hyper_map(F.partial(sgd_opt, self.opt, lr, self.momentum), gradients, params, accum, stat)
- return success
|