|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import ms_function
- from mindspore.ops.operations import _grad_ops as G
-
- context.set_context(device_target='GPU')
-
-
- class SliceGrad(nn.Cell):
- def __init__(self):
- super(SliceGrad, self).__init__()
-
- self.slicegrad = G.SliceGrad()
-
- @ms_function
- def construct(self, dy, x):
- return self.slicegrad(dy, x, (0, 1, 0), (2, 1, 3))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_slice():
- x = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]).astype(np.float32))
- dy = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]).astype(np.float32))
- slicegrad = SliceGrad()
- output = slicegrad(dy, x)
- expect = [[[0., 0., 0.],
- [3., 1., 2.]],
- [[0., 0., 0.],
- [4., 1., 4.]],
- [[0., 0., 0.],
- [0., 0., 0.]]]
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_slice_float64():
- x = Tensor(np.array([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]]).astype(np.float64))
- dy = Tensor(np.array([[[3., 1., 2.]], [[4., 1., 4.]]]).astype(np.float64))
- slicegrad = SliceGrad()
- output = slicegrad(dy, x)
- expect = np.array([[[0., 0., 0.],
- [3., 1., 2.]],
- [[0., 0., 0.],
- [4., 1., 4.]],
- [[0., 0., 0.],
- [0., 0., 0.]]]).astype(np.float64)
- assert (output.asnumpy() == expect).all()
|