|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
- import argparse
- import logging
- import cv2
- import numpy as np
- import mindspore.nn as nn
- import mindspore.ops.operations as F
- from mindspore import context, Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.data_loader import create_dataset, create_cell_nuclei_dataset
- from src.unet_medical import UNetMedical
- from src.unet_nested import NestedUNet, UNet
- from src.config import cfg_unet
- from src.utils import UnetEval
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id)
-
-
- class TempLoss(nn.Cell):
- """A temp loss cell."""
- def __init__(self):
- super(TempLoss, self).__init__()
- self.identity = F.identity()
- def construct(self, logits, label):
- return self.identity(logits)
-
-
- class dice_coeff(nn.Metric):
- def __init__(self):
- super(dice_coeff, self).__init__()
- self.clear()
- def clear(self):
- self._dice_coeff_sum = 0
- self._iou_sum = 0
- self._samples_num = 0
-
- def update(self, *inputs):
- if len(inputs) != 2:
- raise ValueError('Need 2 inputs ((y_softmax, y_argmax), y), but got {}'.format(len(inputs)))
- y = self._convert_data(inputs[1])
- self._samples_num += y.shape[0]
- y = y.transpose(0, 2, 3, 1)
- b, h, w, c = y.shape
- if b != 1:
- raise ValueError('Batch size should be 1 when in evaluation.')
- y = y.reshape((h, w, c))
- if cfg_unet["eval_activate"].lower() == "softmax":
- y_softmax = np.squeeze(self._convert_data(inputs[0][0]), axis=0)
- if cfg_unet["eval_resize"]:
- y_pred = []
- for i in range(cfg_unet["num_classes"]):
- y_pred.append(cv2.resize(np.uint8(y_softmax[:, :, i] * 255), (w, h)) / 255)
- y_pred = np.stack(y_pred, axis=-1)
- else:
- y_pred = y_softmax
- elif cfg_unet["eval_activate"].lower() == "argmax":
- y_argmax = np.squeeze(self._convert_data(inputs[0][1]), axis=0)
- y_pred = []
- for i in range(cfg_unet["num_classes"]):
- if cfg_unet["eval_resize"]:
- y_pred.append(cv2.resize(np.uint8(y_argmax == i), (w, h), interpolation=cv2.INTER_NEAREST))
- else:
- y_pred.append(np.float32(y_argmax == i))
- y_pred = np.stack(y_pred, axis=-1)
- else:
- raise ValueError('config eval_activate should be softmax or argmax.')
- y_pred = y_pred.astype(np.float32)
- inter = np.dot(y_pred.flatten(), y.flatten())
- union = np.dot(y_pred.flatten(), y_pred.flatten()) + np.dot(y.flatten(), y.flatten())
-
- single_dice_coeff = 2*float(inter)/float(union+1e-6)
- single_iou = single_dice_coeff / (2 - single_dice_coeff)
- print("single dice coeff is: {}, IOU is: {}".format(single_dice_coeff, single_iou))
- self._dice_coeff_sum += single_dice_coeff
- self._iou_sum += single_iou
-
- def eval(self):
- if self._samples_num == 0:
- raise RuntimeError('Total samples num must not be 0.')
- return (self._dice_coeff_sum / float(self._samples_num), self._iou_sum / float(self._samples_num))
-
-
- def test_net(data_dir,
- ckpt_path,
- cross_valid_ind=1,
- cfg=None):
- if cfg['model'] == 'unet_medical':
- net = UNetMedical(n_channels=cfg['num_channels'], n_classes=cfg['num_classes'])
- elif cfg['model'] == 'unet_nested':
- net = NestedUNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'], use_deconv=cfg['use_deconv'],
- use_bn=cfg['use_bn'], use_ds=False)
- elif cfg['model'] == 'unet_simple':
- net = UNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'])
- else:
- raise ValueError("Unsupported model: {}".format(cfg['model']))
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
- net = UnetEval(net)
- if 'dataset' in cfg and cfg['dataset'] == "Cell_nuclei":
- valid_dataset = create_cell_nuclei_dataset(data_dir, cfg['img_size'], 1, 1, is_train=False,
- eval_resize=cfg["eval_resize"], split=0.8)
- else:
- _, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False,
- do_crop=cfg['crop'], img_size=cfg['img_size'])
- model = Model(net, loss_fn=TempLoss(), metrics={"dice_coeff": dice_coeff()})
-
- print("============== Starting Evaluating ============")
- eval_score = model.eval(valid_dataset, dataset_sink_mode=False)["dice_coeff"]
- print("============== Cross valid dice coeff is:", eval_score[0])
- print("============== Cross valid IOU is:", eval_score[1])
-
-
- def get_args():
- parser = argparse.ArgumentParser(description='Test the UNet on images and target masks',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/',
- help='data directory')
- parser.add_argument('-p', '--ckpt_path', dest='ckpt_path', type=str, default='ckpt_unet_medical_adam-1_600.ckpt',
- help='checkpoint path')
-
- return parser.parse_args()
-
-
- if __name__ == '__main__':
- logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
- args = get_args()
- print("Testing setting:", args)
- test_net(data_dir=args.data_url,
- ckpt_path=args.ckpt_path,
- cross_valid_ind=cfg_unet['cross_valid_ind'],
- cfg=cfg_unet)
|