|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.tile = P.Tile()
-
- def construct(self, x):
- return self.tile(x, (1, 4))
-
-
- arr_x = np.array([[0], [1], [2], [3]]).astype(np.int32)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net():
- tile = Net()
- print(arr_x)
- output = tile(Tensor(arr_x))
- print(output.asnumpy())
-
-
- arr_x = np.array([[0], [1], [2], [3]]).astype(np.float64)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net_float64():
- tile = Net()
- print(arr_x)
- output = tile(Tensor(arr_x))
- print(output.asnumpy())
-
-
- arr_x = np.array([[0], [1], [2], [3]]).astype(np.bool_)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_net_bool():
- tile = Net()
- print(arr_x)
- output = tile(Tensor(arr_x))
- print(output.asnumpy())
|