|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.ops as ops
- from mindspore import context
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class CropAndResizeNet(nn.Cell):
- def __init__(self, crop_size):
- super(CropAndResizeNet, self).__init__()
- self.crop_and_resize = P.CropAndResize()
- self.crop_size = crop_size
-
- def construct(self, x, boxes, box_indices):
- return self.crop_and_resize(x, boxes, box_indices, self.crop_size)
-
- def bprop(self, x, boxes, box_indices, out, dout):
- return x, boxes, box_indices
-
-
- class TestUserDefinedBpropNet(nn.Cell):
- def __init__(self, in_channel, out_channel):
- super(TestUserDefinedBpropNet, self).__init__()
- self.relu = nn.ReLU()
- self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=2, stride=1, has_bias=False,
- weight_init='ones', pad_mode='same')
- self.crop = CropAndResizeNet((10, 10))
- self.boxes = Tensor(np.ones((128, 4)).astype(np.float32))
- self.box_indices = Tensor(np.ones((128,)).astype(np.int32))
-
- def construct(self, x):
- x = self.relu(x)
- x = self.conv(x)
- x = self.crop(x, self.boxes, self.box_indices)
- return x
-
-
- class TestUserDefinedBpropGradNet(nn.Cell):
- def __init__(self, net):
- super(TestUserDefinedBpropGradNet, self).__init__()
- self.net = net
-
- def construct(self, x):
- return grad_all(self.net)(x)
-
-
- def test_user_defined_bprop():
- context.set_context(mode=context.GRAPH_MODE)
- net = TestUserDefinedBpropNet(3, 10)
- grad_net = TestUserDefinedBpropGradNet(net)
- x = Tensor(np.ones((128, 3, 12, 12)).astype(np.float32))
- grad_net(x)
-
-
- class SinNet(nn.Cell):
- def __init__(self):
- super(SinNet, self).__init__()
- self.sin = ops.Sin()
-
- def construct(self, x):
- out = self.sin(x)
- return out
-
-
- class SinGrad(nn.Cell):
- def __init__(self, network):
- super(SinGrad, self).__init__()
- self.grad = ops.GradOperation()
- self.network = network
-
- def construct(self, x):
- gout = self.grad(self.network)(x)
- return gout
-
-
- class SinGradSec(nn.Cell):
- def __init__(self, network):
- super(SinGradSec, self).__init__()
- self.grad = ops.GradOperation()
- self.network = network
-
- def construct(self, x):
- gout = self.grad(self.network)(x)
- return gout
-
-
- def test_second_grad_with_j_primitive():
- context.set_context(mode=context.GRAPH_MODE)
- net = SinNet()
- first_grad = SinGrad(net)
- second_grad = SinGradSec(first_grad)
- x = Tensor(np.array([1.0], dtype=np.float32))
- second_grad(x)
-
-
- # A CNode being used as FV is MapMorphism after MapMorphism of call-site CNode;
- def test_ad_fv_cnode_order():
- context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
-
- # cnode xay is not being MapMorphism when cnode second_level() is being MapMorphism and
- # BackPropagateFv as MapMorphism is started from output node and from left to right order.
- def construct(self, x, y):
- def first_level():
- xay = x + y
-
- def second_level():
- return xay
-
- return second_level() + xay
- return first_level()
-
- input_x = Tensor(np.array([1.0], dtype=np.float32))
- input_y = Tensor(np.array([2.0], dtype=np.float32))
-
- net = Net()
- net.add_flags_recursive(defer_inline=True)
- grad_net = grad_all(net)
- grad_net(input_x, input_y)
|