|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test_precision"""
- import math
- import numpy as np
- import pytest
-
- from mindspore import Tensor
- from mindspore.nn.metrics import Precision
-
-
- def test_classification_precision():
- """test_classification_precision"""
- x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
- y = Tensor(np.array([1, 0, 1]))
- y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
- metric = Precision('classification')
- metric.clear()
- metric.update(x, y)
- precision = metric.eval()
- precision2 = metric(x, y2)
-
- assert np.equal(precision, np.array([0.5, 1])).all()
- assert np.equal(precision2, np.array([0.5, 1])).all()
-
-
- def test_multilabel_precision():
- x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
- y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]]))
- metric = Precision('multilabel')
- metric.clear()
- metric.update(x, y)
- precision = metric.eval()
-
- assert np.equal(precision, np.array([1, 2 / 3, 1])).all()
-
-
- def test_average_precision():
- x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]))
- y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]]))
- metric = Precision('multilabel')
- metric.clear()
- metric.update(x, y)
- precision = metric.eval(True)
-
- assert math.isclose(precision, (1 + 2 / 3 + 1) / 3)
-
-
- def test_num_precision():
- x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
- y = Tensor(np.array([1, 0]))
- metric = Precision('classification')
- metric.clear()
-
- with pytest.raises(ValueError):
- metric.update(x, y)
|