|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test_occlusion_sensitivity"""
- import pytest
- import numpy as np
- from mindspore import nn
- from mindspore.common.tensor import Tensor
- from mindspore.nn.metrics import OcclusionSensitivity
-
-
- class DenseNet(nn.Cell):
- def __init__(self):
- super(DenseNet, self).__init__()
- w = np.array([[0.1, 0.8, 0.1, 0.1], [1, 1, 1, 1]]).astype(np.float32)
- b = np.array([0.3, 0.6]).astype(np.float32)
- self.dense = nn.Dense(4, 2, weight_init=Tensor(w), bias_init=Tensor(b))
-
- def construct(self, x):
- return self.dense(x)
-
-
- model = DenseNet()
-
-
- def test_occlusion_sensitivity():
- """test_occlusion_sensitivity"""
- test_data = np.array([[0.1, 0.2, 0.3, 0.4]]).astype(np.float32)
- label = np.array(1).astype(np.int32)
- metric = OcclusionSensitivity()
- metric.clear()
- metric.update(model, test_data, label)
- score = metric.eval()
-
- assert np.allclose(score, np.array([0.2, 0.2, 0.2, 0.2]))
-
-
- def test_occlusion_sensitivity_update1():
- """test_occlusion_sensitivity_update1"""
- test_data = np.array([[5, 8], [3, 2], [4, 2]])
- metric = OcclusionSensitivity()
- metric.clear()
-
- with pytest.raises(ValueError):
- metric.update(test_data)
-
-
- def test_occlusion_sensitivity_init1():
- """test_occlusion_sensitivity_init1"""
- with pytest.raises(TypeError):
- OcclusionSensitivity(pad_val=False, margin=2, n_batch=128, b_box=None)
-
-
- def test_occlusion_sensitivity_init2():
- """test_occlusion_sensitivity_init2"""
- with pytest.raises(TypeError):
- OcclusionSensitivity(pad_val=0.0, margin=True, n_batch=128, b_box=None)
-
-
- def test_occlusion_sensitivity_runtime():
- """test_occlusion_sensitivity_runtime"""
- metric = OcclusionSensitivity()
- metric.clear()
-
- with pytest.raises(RuntimeError):
- metric.eval()
|