|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASETS_H_
- #define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASETS_H_
-
- #include <unistd.h>
- #include <map>
- #include <memory>
- #include <set>
- #include <string>
- #include <unordered_map>
- #include <unordered_set>
- #include <utility>
- #include <vector>
- #include "minddata/dataset/engine/ir/cache/dataset_cache.h"
-
- #include "minddata/dataset/core/constants.h"
- #include "minddata/dataset/engine/consumers/tree_consumer.h"
- #include "minddata/dataset/engine/data_schema.h"
- #include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
- #include "minddata/dataset/include/iterator.h"
- #include "minddata/dataset/include/samplers.h"
- #include "minddata/dataset/include/tensor.h"
- #include "minddata/dataset/include/type_id.h"
- #include "minddata/dataset/kernels/c_func_op.h"
- #include "minddata/dataset/kernels/tensor_op.h"
- #include "minddata/dataset/util/path.h"
- #ifndef ENABLE_ANDROID
- #include "minddata/dataset/text/sentence_piece_vocab.h"
- #include "minddata/dataset/text/vocab.h"
- #endif
-
- namespace mindspore {
- namespace dataset {
-
- class DatasetOp;
- class DataSchema;
- class Tensor;
- class TensorShape;
- class TreeAdapter;
- class TreeGetters;
- #ifndef ENABLE_ANDROID
- class Vocab;
- #endif
-
- namespace api {
- // Forward declare
- class DatasetNode;
- class Dataset;
- class Iterator;
-
- class TensorOperation;
- class SchemaObj;
- class SamplerObj;
- // Datasets classes (in alphabetical order)
- class CsvBase;
- class BatchDataset;
- // Dataset Op classes (in alphabetical order)
- #ifndef ENABLE_ANDROID
- class BucketBatchByLengthDataset;
- #endif
- class ConcatDataset;
- class MapDataset;
- class ProjectDataset;
- class RenameDataset;
- class RepeatDataset;
- class ShuffleDataset;
- class SkipDataset;
- class TakeDataset;
- class TransferDataset;
- class ZipDataset;
-
- /// \class Dataset datasets.h
- /// \brief A base class to represent a dataset in the data pipeline.
- class Dataset : public std::enable_shared_from_this<Dataset> {
- public:
- // need friend class so they can access the children_ field
- friend class Iterator;
- friend class TransferNode;
- friend class mindspore::dataset::TreeAdapter;
-
- /// \brief Constructor
- Dataset();
-
- /// \brief Destructor
- ~Dataset() = default;
-
- /// \brief Gets the dataset size
- /// \return dataset size. If failed, return -1
- int64_t GetDatasetSize();
-
- /// \brief Gets the output type
- /// \return a vector of DataType. If failed, return an empty vector
- std::vector<DataType> GetOutputTypes();
-
- /// \brief Gets the output shape
- /// \return a vector of TensorShape. If failed, return am empty vector
- std::vector<TensorShape> GetOutputShapes();
-
- /// \brief Gets the batch size
- /// \return int64_t
- int64_t GetBatchSize();
-
- /// \brief Gets the the repeat count
- /// \return int64_t
- int64_t GetRepeatCount();
-
- /// \brief Gets the number of classes
- /// \return number of classes. If failed, return -1
- int64_t GetNumClasses();
-
- /// \brief Setter function for runtime number of workers
- /// \param[in] num_workers The number of threads in this operator
- /// \return Shared pointer to the original object
- std::shared_ptr<Dataset> SetNumWorkers(int32_t num_workers);
-
- /// \brief Function to create an Iterator over the Dataset pipeline
- /// \param[in] columns List of columns to be used to specify the order of columns
- /// \return Shared pointer to the Iterator
- std::shared_ptr<Iterator> CreateIterator(std::vector<std::string> columns = {});
-
- /// \brief Function to transfer data through a device.
- /// \notes If device is Ascend, features of data will be transferred one by one. The limitation
- /// of data transmission per time is 256M.
- /// \param[in] send_epoch_end Whether to send end of sequence to device or not (default=True).
- /// \return Returns true if no error encountered else false.
- bool DeviceQueue(bool send_epoch_end = true);
-
- #ifndef ENABLE_ANDROID
- /// \brief Function to create a Saver to save the dynamic data processed by the dataset pipeline
- /// \note Usage restrictions:
- /// 1. Supported dataset formats: 'mindrecord' only
- /// 2. To save the samples in order, set dataset's shuffle to false and num_files to 1.
- /// 3. Before calling the function, do not use batch operator, repeat operator or data augmentation operators
- /// with random attribute in map operator.
- /// 4. Mindrecord does not support bool, uint64, multi-dimensional uint8(drop dimension) nor
- /// multi-dimensional string.
- /// \param[in] file_name Path to dataset file
- /// \param[in] num_files Number of dataset files (default=1)
- /// \param[in] file_type Dataset format (default="mindrecord")
- /// \return Returns true if no error encountered else false
- bool Save(std::string dataset_path, int32_t num_files = 1, std::string dataset_type = "mindrecord");
- #endif
-
- /// \brief Function to create a BatchDataset
- /// \notes Combines batch_size number of consecutive rows into batches
- /// \param[in] batch_size The number of rows each batch is created with
- /// \param[in] drop_remainder Determines whether or not to drop the last possibly incomplete
- /// batch. If true, and if there are less than batch_size rows
- /// available to make the last batch, then those rows will
- /// be dropped and not propagated to the next node
- /// \return Shared pointer to the current BatchDataset
- std::shared_ptr<BatchDataset> Batch(int32_t batch_size, bool drop_remainder = false) {
- return std::make_shared<BatchDataset>(shared_from_this(), batch_size, drop_remainder);
- }
-
- #ifndef ENABLE_ANDROID
- /// \brief Function to create a BucketBatchByLengthDataset
- /// \notes Bucket elements according to their lengths. Each bucket will be padded and batched when
- /// they are full.
- /// \param[in] column_names Columns passed to element_length_function
- /// \param[in] bucket_boundaries A list consisting of the upper boundaries of the buckets.
- /// Must be strictly increasing. If there are n boundaries, n+1 buckets are created: One bucket for
- /// [0, bucket_boundaries[0]), one bucket for [bucket_boundaries[i], bucket_boundaries[i+1]) for each
- /// 0<i<n, and one bucket for [bucket_boundaries[n-1], inf).
- /// \param[in] bucket_batch_sizes A list consisting of the batch sizes for each bucket.
- /// Must contain elements equal to the size of bucket_boundaries + 1.
- /// \param[in] element_length_function A function pointer that takes in TensorRow and outputs a TensorRow.
- /// The output must contain a single tensor containing a single int32_t. If no value is provided,
- /// then size of column_names must be 1, and the size of the first dimension of that column will be taken
- /// as the length (default=nullptr)
- /// \param[in] pad_info Represents how to batch each column. The key corresponds to the column name, the value must
- /// be a tuple of 2 elements. The first element corresponds to the shape to pad to, and the second element
- /// corresponds to the value to pad with. If a column is not specified, then that column will be padded to the
- /// longest in the current batch, and 0 will be used as the padding value. Any unspecified dimensions will be
- /// padded to the longest in the current batch, unless if pad_to_bucket_boundary is true. If no padding is
- /// wanted, set pad_info to None (default=empty dictionary).
- /// \param[in] pad_to_bucket_boundary If true, will pad each unspecified dimension in pad_info to the
- /// bucket_boundary minus 1. If there are any elements that fall into the last bucket,
- /// an error will occur (default=false).
- /// \param[in] drop_remainder If true, will drop the last batch for each bucket if it is not a full batch
- /// (default=false).
- /// \return Shared pointer to the current BucketBatchByLengthDataset
- std::shared_ptr<BucketBatchByLengthDataset> BucketBatchByLength(
- const std::vector<std::string> &column_names, const std::vector<int32_t> &bucket_boundaries,
- const std::vector<int32_t> &bucket_batch_sizes,
- std::function<TensorRow(TensorRow)> element_length_function = nullptr,
- const std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> &pad_info = {},
- bool pad_to_bucket_boundary = false, bool drop_remainder = false) {
- return std::make_shared<BucketBatchByLengthDataset>(shared_from_this(), column_names, bucket_boundaries,
- bucket_batch_sizes, element_length_function, pad_info,
- pad_to_bucket_boundary, drop_remainder);
- }
-
- /// \brief Function to create a SentencePieceVocab from source dataset
- /// \notes Build a SentencePieceVocab from a dataset.
- /// \param[in] col_names Column names to get words from. It can be a vector of column names
- /// \param[in] vocab_size Vocabulary size. The type is uint32
- /// \param[in] character_coverage Percentage of characters covered by the model, must be between
- /// 0.98 and 1.0 Good defaults are: 0.9995 for languages with rich character sets like
- /// Japanese or Chinese character sets, and 1.0 for other languages with small character sets.
- /// \param[in] model_type Model type. Choose from unigram (default), bpe, char, or word.
- /// The input sentence must be pretokenized when using word type.
- /// \param[in] params A vector contains more option parameters of sentencepiece library
- std::shared_ptr<SentencePieceVocab> BuildSentencePieceVocab(
- const std::vector<std::string> &col_names, uint32_t vocab_size, float character_coverage,
- SentencePieceModel model_type, const std::unordered_map<std::string, std::string> ¶ms);
-
- /// \brief Function to create a Vocab from source dataset
- /// \notes Build a vocab from a dataset. This would collect all the unique words in a dataset and return a vocab
- /// which contains top_k most frequent words (if top_k is specified)
- /// \param[in] columns Column names to get words from. It can be a vector of column names
- /// \param[in] freq_range A tuple of integers (min_frequency, max_frequency). Words within the frequency
- /// range would be kept. 0 <= min_frequency <= max_frequency <= total_words. min_frequency/max_frequency
- /// can be set to default, which corresponds to 0/total_words separately
- /// \param[in] top_k Number of words to be built into vocab. top_k most frequent words are
- /// taken. The top_k is taken after freq_range. If not enough top_k, all words will be taken
- /// \param[in] special_tokens A list of strings, each one is a special token
- /// \param[in] special_first Whether special_tokens will be prepended/appended to vocab, If special_tokens
- /// is specified and special_first is set to default, special_tokens will be prepended
- /// \return Shared pointer to the current Vocab
- std::shared_ptr<Vocab> BuildVocab(const std::vector<std::string> &columns = {},
- const std::pair<int64_t, int64_t> &freq_range = {0, kDeMaxFreq},
- int64_t top_k = kDeMaxTopk, const std::vector<std::string> &special_tokens = {},
- bool special_first = true);
- #endif
-
- /// \brief Function to create a ConcatDataset
- /// \notes Concat the datasets in the input
- /// \param[in] datasets List of shared pointers to the dataset that should be concatenated together
- /// \return Shared pointer to the current ConcatDataset
- std::shared_ptr<ConcatDataset> Concat(const std::vector<std::shared_ptr<Dataset>> &datasets) {
- std::vector<std::shared_ptr<Dataset>> all_datasets = datasets;
- all_datasets.push_back(shared_from_this());
- return std::make_shared<ConcatDataset>(all_datasets);
- }
-
- /// \brief Function to create a MapDataset
- /// \notes Applies each operation in operations to this dataset
- /// \param[in] operations Vector of operations to be applied on the dataset. Operations are
- /// applied in the order they appear in this list
- /// \param[in] input_columns Vector of the names of the columns that will be passed to the first
- /// operation as input. The size of this list must match the number of
- /// input columns expected by the first operator. The default input_columns
- /// is the first column
- /// \param[in] output_columns Vector of names assigned to the columns outputted by the last operation
- /// This parameter is mandatory if len(input_columns) != len(output_columns)
- /// The size of this list must match the number of output columns of the
- /// last operation. The default output_columns will have the same
- /// name as the input columns, i.e., the columns will be replaced
- /// \param[in] project_columns A list of column names to project
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current MapDataset
- std::shared_ptr<MapDataset> Map(std::vector<std::shared_ptr<TensorOperation>> operations,
- std::vector<std::string> input_columns = {},
- std::vector<std::string> output_columns = {},
- const std::vector<std::string> &project_columns = {},
- const std::shared_ptr<DatasetCache> &cache = nullptr) {
- return std::make_shared<MapDataset>(shared_from_this(), operations, input_columns, output_columns, project_columns,
- cache);
- }
-
- /// \brief Function to create a Project Dataset
- /// \notes Applies project to the dataset
- /// \param[in] columns The name of columns to project
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<ProjectDataset> Project(const std::vector<std::string> &columns) {
- return std::make_shared<ProjectDataset>(shared_from_this(), columns);
- }
-
- /// \brief Function to create a Rename Dataset
- /// \notes Renames the columns in the input dataset
- /// \param[in] input_columns List of the input columns to rename
- /// \param[in] output_columns List of the output columns
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<RenameDataset> Rename(const std::vector<std::string> &input_columns,
- const std::vector<std::string> &output_columns) {
- return std::make_shared<RenameDataset>(shared_from_this(), input_columns, output_columns);
- }
-
- /// \brief Function to create a RepeatDataset
- /// \notes Repeats this dataset count times. Repeat indefinitely if count is -1
- /// \param[in] count Number of times the dataset should be repeated
- /// \return Shared pointer to the current Dataset
- /// \note Repeat will return shared pointer to `Dataset` instead of `RepeatDataset`
- /// due to a limitation in the current implementation
- std::shared_ptr<RepeatDataset> Repeat(int32_t count = -1) {
- return std::make_shared<RepeatDataset>(shared_from_this(), count);
- }
-
- /// \brief Function to create a Shuffle Dataset
- /// \notes Randomly shuffles the rows of this dataset
- /// \param[in] buffer_size The size of the buffer (must be larger than 1) for shuffling
- /// \return Shared pointer to the current ShuffleDataset
- std::shared_ptr<ShuffleDataset> Shuffle(int32_t buffer_size) {
- return std::make_shared<ShuffleDataset>(shared_from_this(), buffer_size);
- }
-
- /// \brief Function to create a SkipDataset
- /// \notes Skips count elements in this dataset.
- /// \param[in] count Number of elements the dataset to be skipped.
- /// \return Shared pointer to the current SkipDataset
- std::shared_ptr<SkipDataset> Skip(int32_t count) { return std::make_shared<SkipDataset>(shared_from_this(), count); }
-
- /// \brief Function to create a TakeDataset
- /// \notes Takes count elements in this dataset.
- /// \param[in] count Number of elements the dataset to be taken.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<TakeDataset> Take(int32_t count = -1) {
- return std::make_shared<TakeDataset>(shared_from_this(), count);
- }
-
- /// \brief Function to create a Zip Dataset
- /// \notes Applies zip to the dataset
- /// \param[in] datasets A list of shared pointers to the datasets that we want to zip
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<ZipDataset> Zip(const std::vector<std::shared_ptr<Dataset>> &datasets) {
- std::vector<std::shared_ptr<Dataset>> all_datasets = datasets;
- all_datasets.push_back(shared_from_this());
- return std::make_shared<ZipDataset>(all_datasets);
- }
-
- std::shared_ptr<DatasetNode> IRNode() { return ir_node_; }
-
- protected:
- std::shared_ptr<TreeGetters> tree_getters_;
- std::shared_ptr<DatasetNode> ir_node_;
- };
-
- class SchemaObj {
- public:
- /// \brief Constructor
- explicit SchemaObj(const std::string &schema_file = "");
-
- /// \brief Destructor
- ~SchemaObj() = default;
-
- /// \brief SchemaObj init function
- /// \return bool true if schema init success
- bool init();
-
- /// \brief Add new column to the schema
- /// \param[in] name name of the column.
- /// \param[in] de_type data type of the column(TypeId).
- /// \param[in] shape shape of the column.
- /// \return bool true if schema init success
- bool add_column(std::string name, TypeId de_type, std::vector<int32_t> shape);
-
- /// \brief Add new column to the schema
- /// \param[in] name name of the column.
- /// \param[in] de_type data type of the column(std::string).
- /// \param[in] shape shape of the column.
- /// \return bool true if schema init success
- bool add_column(std::string name, std::string de_type, std::vector<int32_t> shape);
-
- /// \brief Get a JSON string of the schema
- /// \return JSON string of the schema
- std::string to_json();
-
- /// \brief Get a JSON string of the schema
- std::string to_string() { return to_json(); }
-
- /// \brief set a new value to dataset_type
- inline void set_dataset_type(std::string dataset_type) { dataset_type_ = dataset_type; }
-
- /// \brief set a new value to num_rows
- inline void set_num_rows(int32_t num_rows) { num_rows_ = num_rows; }
-
- /// \brief get the current num_rows
- inline int32_t get_num_rows() { return num_rows_; }
-
- private:
- /// \brief Parse the columns and add it to columns
- /// \param[in] columns dataset attribution information, decoded from schema file.
- /// support both nlohmann::json::value_t::array and nlohmann::json::value_t::onject.
- /// \return JSON string of the schema
- bool parse_column(nlohmann::json columns);
-
- /// \brief Get schema file from json file
- /// \param[in] json_obj object of json parsed.
- /// \return bool true if json dump success
- bool from_json(nlohmann::json json_obj);
-
- int32_t num_rows_;
- std::string dataset_type_;
- std::string schema_file_;
- nlohmann::json columns_;
- };
-
- class BatchDataset : public Dataset {
- public:
- BatchDataset(std::shared_ptr<Dataset> input, int32_t batch_size, bool drop_remainder = false);
- };
-
- #ifndef ENABLE_ANDROID
- class BucketBatchByLengthDataset : public Dataset {
- public:
- BucketBatchByLengthDataset(
- std::shared_ptr<Dataset> input, const std::vector<std::string> &column_names,
- const std::vector<int32_t> &bucket_boundaries, const std::vector<int32_t> &bucket_batch_sizes,
- std::function<TensorRow(TensorRow)> element_length_function = nullptr,
- const std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>> &pad_info = {},
- bool pad_to_bucket_boundary = false, bool drop_remainder = false);
- };
-
- #endif
-
- class ConcatDataset : public Dataset {
- public:
- explicit ConcatDataset(const std::vector<std::shared_ptr<Dataset>> &input);
- };
-
- class MapDataset : public Dataset {
- public:
- MapDataset(std::shared_ptr<Dataset> input, std::vector<std::shared_ptr<TensorOperation>> operations,
- std::vector<std::string> input_columns, std::vector<std::string> output_columns,
- const std::vector<std::string> &project_columns, const std::shared_ptr<DatasetCache> &cache);
- };
-
- class ProjectDataset : public Dataset {
- public:
- ProjectDataset(std::shared_ptr<Dataset> input, const std::vector<std::string> &columns);
- };
-
- class RenameDataset : public Dataset {
- public:
- RenameDataset(std::shared_ptr<Dataset> input, const std::vector<std::string> &input_columns,
- const std::vector<std::string> &output_columns);
- };
-
- class RepeatDataset : public Dataset {
- public:
- RepeatDataset(std::shared_ptr<Dataset> input, int32_t count);
- };
-
- class ShuffleDataset : public Dataset {
- public:
- ShuffleDataset(std::shared_ptr<Dataset> input, int32_t buffer_size);
- };
-
- class SkipDataset : public Dataset {
- public:
- SkipDataset(std::shared_ptr<Dataset> input, int32_t count);
- };
-
- class TakeDataset : public Dataset {
- public:
- TakeDataset(std::shared_ptr<Dataset> input, int32_t count);
- };
-
- class ZipDataset : public Dataset {
- public:
- explicit ZipDataset(const std::vector<std::shared_ptr<Dataset>> &inputs);
- };
-
- /// \brief Function to create a SchemaObj
- /// \param[in] schema_file Path of schema file
- /// \return Shared pointer to the current schema
- std::shared_ptr<SchemaObj> Schema(const std::string &schema_file = "");
-
- class AlbumDataset : public Dataset {
- public:
- AlbumDataset(const std::string &dataset_dir, const std::string &data_schema,
- const std::vector<std::string> &column_names = {}, bool decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create an AlbumDataset
- /// \notes The generated dataset is specified through setting a schema
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] data_schema Path to dataset schema file
- /// \param[in] column_names Column names used to specify columns to load, if empty, will read all columns.
- /// (default = {})
- /// \param[in] decode the option to decode the images in dataset (default = false)
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<AlbumDataset> Album(const std::string &dataset_dir, const std::string &data_schema,
- const std::vector<std::string> &column_names = {}, bool decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class CelebADataset : public Dataset {
- public:
- explicit CelebADataset(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(), bool decode = false,
- const std::set<std::string> &extensions = {},
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a CelebADataset
- /// \notes The generated dataset has two columns ['image', 'attr'].
- /// The type of the image tensor is uint8. The attr tensor is uint32 and one hot type.
- /// \param[in] dataset_dir Path to the root directory that contains the dataset.
- /// \param[in] usage One of "all", "train", "valid" or "test" (default = "all").
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] decode Decode the images after reading (default=false).
- /// \param[in] extensions Set of file extensions to be included in the dataset (default={}).
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<CelebADataset> CelebA(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(), bool decode = false,
- const std::set<std::string> &extensions = {},
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class Cifar10Dataset : public Dataset {
- public:
- explicit Cifar10Dataset(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a Cifar10 Dataset
- /// \notes The generated dataset has two columns ["image", "label"]
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] usage of CIFAR10, can be "train", "test" or "all" (default = "all").
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<Cifar10Dataset> Cifar10(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class Cifar100Dataset : public Dataset {
- public:
- explicit Cifar100Dataset(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a Cifar100 Dataset
- /// \notes The generated dataset has three columns ["image", "coarse_label", "fine_label"]
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] usage of CIFAR100, can be "train", "test" or "all" (default = "all").
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<Cifar100Dataset> Cifar100(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class CLUEDataset : public Dataset {
- public:
- explicit CLUEDataset(const std::vector<std::string> &dataset_files, const std::string &task = "AFQMC",
- const std::string &usage = "train", int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1, int32_t shard_id = 0,
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a CLUEDataset
- /// \notes The generated dataset has a variable number of columns depending on the task and usage
- /// \param[in] dataset_files List of files to be read to search for a pattern of files. The list
- /// will be sorted in a lexicographical order.
- /// \param[in] task The kind of task, one of "AFQMC", "TNEWS", "IFLYTEK", "CMNLI", "WSC" and "CSL" (default="AFQMC").
- /// \param[in] usage Be used to "train", "test" or "eval" data (default="train").
- /// \param[in] num_samples The number of samples to be included in the dataset.
- /// (Default = 0 means all samples.)
- /// \param[in] shuffle The mode for shuffling data every epoch. (Default=ShuffleMode.kGlobal)
- /// Can be any of:
- /// ShuffleMode::kFalse - No shuffling is performed.
- /// ShuffleMode::kFiles - Shuffle files only.
- /// ShuffleMode::kGlobal - Shuffle both the files and samples.
- /// \param[in] num_shards Number of shards that the dataset should be divided into. (Default = 1)
- /// \param[in] shard_id The shard ID within num_shards. This argument should be
- /// specified only when num_shards is also specified. (Default = 0)
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current CLUEDataset
- std::shared_ptr<CLUEDataset> CLUE(const std::vector<std::string> &dataset_files, const std::string &task = "AFQMC",
- const std::string &usage = "train", int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1,
- int32_t shard_id = 0, const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class CocoDataset : public Dataset {
- public:
- CocoDataset(const std::string &dataset_dir, const std::string &annotation_file, const std::string &task = "Detection",
- const bool &decode = false, const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a CocoDataset
- /// \notes The generated dataset has multi-columns :
- /// - task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
- /// ['iscrowd', dtype=uint32]].
- /// - task='Stuff', column: [['image', dtype=uint8], ['segmentation',dtype=float32], ['iscrowd', dtype=uint32]].
- /// - task='Keypoint', column: [['image', dtype=uint8], ['keypoints', dtype=float32],
- /// ['num_keypoints', dtype=uint32]].
- /// - task='Panoptic', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['category_id', dtype=uint32],
- /// ['iscrowd', dtype=uint32], ['area', dtype=uitn32]].
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] annotation_file Path to the annotation json
- /// \param[in] task Set the task type of reading coco data, now support 'Detection'/'Stuff'/'Panoptic'/'Keypoint'
- /// \param[in] decode Decode the images after reading
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<CocoDataset> Coco(const std::string &dataset_dir, const std::string &annotation_file,
- const std::string &task = "Detection", const bool &decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class CSVDataset : public Dataset {
- public:
- explicit CSVDataset(const std::vector<std::string> &dataset_files, char field_delim = ',',
- const std::vector<std::shared_ptr<CsvBase>> &column_defaults = {},
- const std::vector<std::string> &column_names = {}, int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1, int32_t shard_id = 0,
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a CSVDataset
- /// \notes The generated dataset has a variable number of columns
- /// \param[in] dataset_files List of files to be read to search for a pattern of files. The list
- /// will be sorted in a lexicographical order.
- /// \param[in] field_delim A char that indicates the delimiter to separate fields (default=',').
- /// \param[in] column_defaults List of default values for the CSV field (default={}). Each item in the list is
- /// either a valid type (float, int, or string). If this is not provided, treats all columns as string type.
- /// \param[in] column_names List of column names of the dataset (default={}). If this is not provided, infers the
- /// column_names from the first row of CSV file.
- /// \param[in] num_samples The number of samples to be included in the dataset.
- /// (Default = 0 means all samples.)
- /// \param[in] shuffle The mode for shuffling data every epoch. (Default=ShuffleMode::kGlobal)
- /// Can be any of:
- /// ShuffleMode::kFalse - No shuffling is performed.
- /// ShuffleMode::kFiles - Shuffle files only.
- /// ShuffleMode::kGlobal - Shuffle both the files and samples.
- /// \param[in] num_shards Number of shards that the dataset should be divided into. (Default = 1)
- /// \param[in] shard_id The shard ID within num_shards. This argument should be
- /// specified only when num_shards is also specified. (Default = 0)
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<CSVDataset> CSV(const std::vector<std::string> &dataset_files, char field_delim = ',',
- const std::vector<std::shared_ptr<CsvBase>> &column_defaults = {},
- const std::vector<std::string> &column_names = {}, int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1,
- int32_t shard_id = 0, const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- class ImageFolderDataset : public Dataset {
- public:
- explicit ImageFolderDataset(const std::string &dataset_dir, bool decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::set<std::string> &extensions = {},
- const std::map<std::string, int32_t> &class_indexing = {},
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create an ImageFolderDataset
- /// \notes A source dataset that reads images from a tree of directories
- /// All images within one folder have the same label
- /// The generated dataset has two columns ["image", "label"]
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] decode A flag to decode in ImageFolder
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] extensions File extensions to be read
- /// \param[in] class_indexing a class name to label map
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current ImageFolderDataset
- std::shared_ptr<ImageFolderDataset> ImageFolder(const std::string &dataset_dir, bool decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::set<std::string> &extensions = {},
- const std::map<std::string, int32_t> &class_indexing = {},
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- #ifndef ENABLE_ANDROID
- class ManifestDataset : public Dataset {
- public:
- explicit ManifestDataset(const std::string &dataset_file, const std::string &usage = "train",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::map<std::string, int32_t> &class_indexing = {}, bool decode = false,
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a ManifestDataset
- /// \notes The generated dataset has two columns ["image", "label"]
- /// \param[in] dataset_file The dataset file to be read
- /// \param[in] usage Need "train", "eval" or "inference" data (default="train")
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] class_indexing A str-to-int mapping from label name to index (default={}, the folder
- /// names will be sorted alphabetically and each class will be given a unique index starting from 0).
- /// \param[in] decode Decode the images after reading (default=false).
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current ManifestDataset
- std::shared_ptr<ManifestDataset> Manifest(const std::string &dataset_file, const std::string &usage = "train",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::map<std::string, int32_t> &class_indexing = {},
- bool decode = false, const std::shared_ptr<DatasetCache> &cache = nullptr);
- #endif
-
- #ifndef ENABLE_ANDROID
- class MindDataDataset : public Dataset {
- public:
- explicit MindDataDataset(const std::string &dataset_file, const std::vector<std::string> &columns_list = {},
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- nlohmann::json padded_sample = nullptr, int64_t num_padded = 0);
- explicit MindDataDataset(const std::vector<std::string> &dataset_files,
- const std::vector<std::string> &columns_list = {},
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- nlohmann::json padded_sample = nullptr, int64_t num_padded = 0);
- };
-
- /// \brief Function to create a MindDataDataset
- /// \param[in] dataset_file File name of one component of a mindrecord source. Other files with identical source
- /// in the same path will be found and loaded automatically.
- /// \param[in] columns_list List of columns to be read (default={})
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler()),
- /// supported sampler list: SubsetRandomSampler, PkSampler, RandomSampler, SequentialSampler, DistributedSampler.
- /// \param[in] padded_sample Samples will be appended to dataset, where keys are the same as column_list.
- /// \param[in] num_padded Number of padding samples. Dataset size plus num_padded should be divisible by num_shards.
- /// \return Shared pointer to the current MindDataDataset
- std::shared_ptr<MindDataDataset> MindData(const std::string &dataset_file,
- const std::vector<std::string> &columns_list = {},
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- nlohmann::json padded_sample = nullptr, int64_t num_padded = 0);
-
- /// \brief Function to create a MindDataDataset
- /// \param[in] dataset_files List of dataset files to be read directly.
- /// \param[in] columns_list List of columns to be read (default={})
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler()),
- /// supported sampler list: SubsetRandomSampler, PkSampler, RandomSampler, SequentialSampler, DistributedSampler.
- /// \param[in] padded_sample Samples will be appended to dataset, where keys are the same as column_list.
- /// \param[in] num_padded Number of padding samples. Dataset size plus num_padded should be divisible by num_shards.
- /// \return Shared pointer to the current MindDataDataset
- std::shared_ptr<MindDataDataset> MindData(const std::vector<std::string> &dataset_files,
- const std::vector<std::string> &columns_list = {},
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- nlohmann::json padded_sample = nullptr, int64_t num_padded = 0);
- #endif
-
- class MnistDataset : public Dataset {
- public:
- explicit MnistDataset(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a MnistDataset
- /// \notes The generated dataset has two columns ["image", "label"]
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] usage of MNIST, can be "train", "test" or "all" (default = "all").
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current MnistDataset
- std::shared_ptr<MnistDataset> Mnist(const std::string &dataset_dir, const std::string &usage = "all",
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- /// \brief Function to create a ConcatDataset
- /// \notes Reload "+" operator to concat two datasets
- /// \param[in] datasets1 Shared pointer to the first dataset to be concatenated
- /// \param[in] datasets2 Shared pointer to the second dataset to be concatenated
- /// \return Shared pointer to the current ConcatDataset
- std::shared_ptr<ConcatDataset> operator+(const std::shared_ptr<Dataset> &datasets1,
- const std::shared_ptr<Dataset> &datasets2);
-
- class RandomDataDataset : public Dataset {
- public:
- RandomDataDataset(const int32_t &total_rows, std::shared_ptr<SchemaObj> schema,
- const std::vector<std::string> &columns_list, const std::shared_ptr<SamplerObj> &sampler,
- std::shared_ptr<DatasetCache> cache);
-
- RandomDataDataset(const int32_t &total_rows, std::string schema_path, const std::vector<std::string> &columns_list,
- const std::shared_ptr<SamplerObj> &sampler, std::shared_ptr<DatasetCache> cache);
- };
-
- /// \brief Function to create a RandomDataset
- /// \param[in] total_rows Number of rows for the dataset to generate (default=0, number of rows is random)
- /// \param[in] schema SchemaObj to set column type, data type and data shape
- /// \param[in] columns_list List of columns to be read (default={}, read all columns)
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- template <typename T = std::shared_ptr<SchemaObj>>
- std::shared_ptr<RandomDataDataset> RandomData(const int32_t &total_rows = 0, const T &schema = nullptr,
- const std::vector<std::string> &columns_list = {},
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr) {
- std::shared_ptr<RandomDataDataset> ds;
- if constexpr (std::is_same<T, std::nullptr_t>::value || std::is_same<T, std::shared_ptr<SchemaObj>>::value) {
- std::shared_ptr<SchemaObj> schema_obj = schema;
- ds = std::make_shared<RandomDataDataset>(total_rows, std::move(schema_obj), std::move(columns_list),
- std::move(sampler), cache);
- } else {
- ds = std::make_shared<RandomDataDataset>(total_rows, std::move(schema), std::move(columns_list), std::move(sampler),
- cache);
- }
- return ds;
- }
-
- class TextFileDataset : public Dataset {
- public:
- explicit TextFileDataset(const std::vector<std::string> &dataset_files, int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1, int32_t shard_id = 0,
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a TextFileDataset
- /// \notes The generated dataset has one column ['text']
- /// \param[in] dataset_files List of files to be read to search for a pattern of files. The list
- /// will be sorted in a lexicographical order.
- /// \param[in] num_samples The number of samples to be included in the dataset.
- /// (Default = 0 means all samples.)
- /// \param[in] shuffle The mode for shuffling data every epoch. (Default=ShuffleMode.kGlobal)
- /// Can be any of:
- /// ShuffleMode.kFalse - No shuffling is performed.
- /// ShuffleMode.kFiles - Shuffle files only.
- /// ShuffleMode.kGlobal - Shuffle both the files and samples.
- /// \param[in] num_shards Number of shards that the dataset should be divided into. (Default = 1)
- /// \param[in] shard_id The shard ID within num_shards. This argument should be
- /// specified only when num_shards is also specified. (Default = 0)
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current TextFileDataset
- std::shared_ptr<TextFileDataset> TextFile(const std::vector<std::string> &dataset_files, int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1,
- int32_t shard_id = 0, const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- #ifndef ENABLE_ANDROID
- class TFRecordDataset : public Dataset {
- public:
- TFRecordDataset(const std::vector<std::string> &dataset_files, std::string schema,
- const std::vector<std::string> &columns_list, int64_t num_samples, ShuffleMode shuffle,
- int32_t num_shards, int32_t shard_id, bool shard_equal_rows, std::shared_ptr<DatasetCache> cache);
-
- /// \brief Constructor
- /// \note Parameter 'schema' is shared pointer to Schema object
- TFRecordDataset(const std::vector<std::string> &dataset_files, std::shared_ptr<SchemaObj> schema,
- const std::vector<std::string> &columns_list, int64_t num_samples, ShuffleMode shuffle,
- int32_t num_shards, int32_t shard_id, bool shard_equal_rows, std::shared_ptr<DatasetCache> cache);
- };
-
- /// \brief Function to create a TFRecordDataset
- /// \param[in] dataset_files List of files to be read to search for a pattern of files. The list
- /// will be sorted in a lexicographical order.
- /// \param[in] schema SchemaObj or string to schema path. (Default = nullptr, which means that the
- /// meta data from the TFData file is considered the schema.)
- /// \param[in] columns_list List of columns to be read. (Default = {}, read all columns)
- /// \param[in] num_samples The number of samples to be included in the dataset.
- /// (Default = 0 means all samples.)
- /// If num_samples is 0 and numRows(parsed from schema) does not exist, read the full dataset;
- /// If num_samples is 0 and numRows(parsed from schema) is greater than 0, read numRows rows;
- /// If both num_samples and numRows(parsed from schema) are greater than 0, read num_samples rows.
- /// \param[in] shuffle The mode for shuffling data every epoch. (Default = ShuffleMode::kGlobal)
- /// Can be any of:
- /// ShuffleMode::kFalse - No shuffling is performed.
- /// ShuffleMode::kFiles - Shuffle files only.
- /// ShuffleMode::kGlobal - Shuffle both the files and samples.
- /// \param[in] num_shards Number of shards that the dataset should be divided into. (Default = 1)
- /// \param[in] shard_id The shard ID within num_shards. This argument should be specified only
- /// when num_shards is also specified. (Default = 0)
- /// \param[in] shard_equal_rows Get equal rows for all shards. (Default = False, number of rows of
- /// each shard may be not equal)
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current TFRecordDataset
- template <typename T = std::shared_ptr<SchemaObj>>
- std::shared_ptr<TFRecordDataset> TFRecord(const std::vector<std::string> &dataset_files, const T &schema = nullptr,
- const std::vector<std::string> &columns_list = {}, int64_t num_samples = 0,
- ShuffleMode shuffle = ShuffleMode::kGlobal, int32_t num_shards = 1,
- int32_t shard_id = 0, bool shard_equal_rows = false,
- const std::shared_ptr<DatasetCache> &cache = nullptr) {
- std::shared_ptr<TFRecordDataset> ds = nullptr;
- if constexpr (std::is_same<T, std::nullptr_t>::value || std::is_same<T, std::shared_ptr<SchemaObj>>::value) {
- std::shared_ptr<SchemaObj> schema_obj = schema;
- ds = std::make_shared<TFRecordDataset>(dataset_files, schema_obj, columns_list, num_samples, shuffle, num_shards,
- shard_id, shard_equal_rows, cache);
- } else {
- std::string schema_path = schema;
- if (!schema_path.empty()) {
- Path schema_file(schema_path);
- if (!schema_file.Exists()) {
- MS_LOG(ERROR) << "TFRecordDataset: schema path [" << schema_path << "] is invalid or does not exist.";
- return nullptr;
- }
- }
- ds = std::make_shared<TFRecordDataset>(dataset_files, schema_path, columns_list, num_samples, shuffle, num_shards,
- shard_id, shard_equal_rows, cache);
- }
- return ds;
- }
-
- class VOCDataset : public Dataset {
- public:
- explicit VOCDataset(const std::string &dataset_dir, const std::string &task = "Segmentation",
- const std::string &usage = "train", const std::map<std::string, int32_t> &class_indexing = {},
- bool decode = false, const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
- };
-
- /// \brief Function to create a VOCDataset
- /// \notes The generated dataset has multi-columns :
- /// - task='Detection', column: [['image', dtype=uint8], ['bbox', dtype=float32], ['label', dtype=uint32],
- /// ['difficult', dtype=uint32], ['truncate', dtype=uint32]].
- /// - task='Segmentation', column: [['image', dtype=uint8], ['target',dtype=uint8]].
- /// \param[in] dataset_dir Path to the root directory that contains the dataset
- /// \param[in] task Set the task type of reading voc data, now only support "Segmentation" or "Detection"
- /// \param[in] usage The type of data list text file to be read (default = "train").
- /// \param[in] class_indexing A str-to-int mapping from label name to index, only valid in "Detection" task
- /// \param[in] decode Decode the images after reading
- /// \param[in] sampler Object used to choose samples from the dataset. If sampler is not given,
- /// a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler())
- /// \param[in] cache Tensor cache to use. (default=nullptr which means no cache is used).
- /// The cache feature is under development and is not recommended.
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<VOCDataset> VOC(const std::string &dataset_dir, const std::string &task = "Segmentation",
- const std::string &usage = "train",
- const std::map<std::string, int32_t> &class_indexing = {}, bool decode = false,
- const std::shared_ptr<SamplerObj> &sampler = RandomSampler(),
- const std::shared_ptr<DatasetCache> &cache = nullptr);
-
- /// \brief Function the create a cache to be attached to a dataset
- /// \param id A user assigned session id for the current pipeline
- /// \param mem_sz Size of the memory set aside for the row caching. 0 for unlimited
- /// \param spill Spill to disk if out of memory
- /// \param hostname optional host name
- /// \param port optional port
- /// \param num_connections optional number of connections
- /// \param prefetch_sz optional prefetch size
- /// \return Shared pointer to DatasetCache. If error, nullptr is returned.
- std::shared_ptr<DatasetCache> CreateDatasetCache(session_id_type id, uint64_t mem_sz, bool spill,
- std::optional<std::string> hostname = std::nullopt,
- std::optional<int32_t> port = std::nullopt,
- std::optional<int32_t> num_connections = std::nullopt,
- std::optional<int32_t> prefetch_sz = std::nullopt);
- #endif
-
- /// \brief Function to create a ZipDataset
- /// \notes Applies zip to the dataset
- /// \param[in] datasets List of shared pointers to the datasets that we want to zip
- /// \return Shared pointer to the current Dataset
- std::shared_ptr<ZipDataset> Zip(const std::vector<std::shared_ptr<Dataset>> &datasets);
- } // namespace api
- } // namespace dataset
- } // namespace mindspore
-
- #endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASETS_H_
|