|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Profiling api file."""
- import os
- import re
- import stat
- import time
- import json
- from enum import Enum
-
- from mindspore import log as logger, context
- from mindspore.communication.management import GlobalComm, release, get_rank
- import mindspore._c_expression as c_expression
- from mindspore.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \
- ProfilerIOException, ProfilerException, ProfilerRawFileException
- from mindspore.profiler.common.util import get_file_names, fwrite_format
- from mindspore.profiler.common.validator.validate_path import \
- validate_and_normalize_path
- from mindspore.profiler.parser.aicpu_data_parser import DataPreProcessParser
- from mindspore.profiler.parser.framework_parser import FrameworkParser
- from mindspore.profiler.parser.hwts_log_parser import HWTSLogParser
- from mindspore.profiler.parser.integrator import Integrator
- from mindspore.profiler.parser.integrator import GpuTimelineGenerator, AscendTimelineGenerator
- from mindspore.profiler.parser.memory_usage_parser import MemoryUsageParser
- from mindspore.profiler.parser.minddata_parser import MinddataParser
- from mindspore.profiler.parser.minddata_pipeline_parser import \
- MinddataPipelineParser
- from mindspore.profiler.parser.optime_parser import OPComputeTimeParser
- from mindspore.profiler.parser.step_trace_parser import GpuStepTraceParser, AscendStepTraceParser
- from mindspore.nn.cell import Cell
-
- INIT_OP_NAME = 'Default/InitDataSetQueue'
-
- class ProfileOption(Enum):
- """
- Profile Option Enum which be used in Profiler.profile.
- """
- trainable_parameters = 0
-
- class Profiler:
- """
- Performance profiling API.
-
- This API enables MindSpore users to profile the performance of neural network.
- Profiler supports Ascend and GPU, both of them are used in the same way,
- but only output_path in args works on GPU.
-
- Args:
- output_path (str): Output data path.
- optypes_not_deal (str): (Ascend only) Op type names, determine the data of which optype should be collected
- and analysed,will deal with all op if null; Different op types should be separated by comma.
- ascend_job_id (str): (Ascend only) The directory where the profiling files to be parsed are located;
- This parameter is used to support offline parsing.
-
- Examples:
- >>> import numpy as np
- >>> from mindspore import nn, context
- >>> from mindspore.train import Model
- >>> import mindspore.dataset as ds
- >>> from mindspore.profiler import Profiler
- >>>
- >>>
- >>> class Net(nn.Cell):
- ... def __init__(self):
- ... super(Net, self).__init__()
- ... self.fc = nn.Dense(2,2)
- ... def construct(self, x):
- ... return self.fc(x)
- >>>
- >>> def generator():
- ... for i in range(2):
- ... yield (np.ones([2, 2]).astype(np.float32), np.ones([2]).astype(np.int32))
- >>>
- >>> def train(net):
- ... optimizer = nn.Momentum(net.trainable_params(), 1, 0.9)
- ... loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
- ... data = ds.GeneratorDataset(generator, ["data", "label"])
- ... model = Model(net, loss, optimizer)
- ... model.train(1, data)
- >>>
- >>> if __name__ == '__main__':
- ... # If the device_target is GPU, set the device_target to "GPU"
- ... context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- ...
- ... # Init Profiler
- ... # Note that the Profiler should be initialized after context.set_context and before model.train
- ... profiler = Profiler()
- ...
- ... # Train Model
- ... net = Net()
- ... train(net)
- ...
- ... # Profiler end
- ... profiler.analyse()
- """
-
- _hwts_output_filename_target = "output_format_data_hwts_"
- _opcompute_output_filename_target = "output_op_compute_time_"
- _aicpu_op_output_filename_target = "output_data_preprocess_aicpu_"
-
- def __init__(self, **kwargs):
- # get device_id and device_target
- self._get_devid_and_devtarget()
- self._get_output_path(kwargs)
-
- os.environ['PROFILING_MODE'] = 'true'
- os.environ['MINDDATA_PROFILING_DIR'] = self._output_path
-
- if self._device_target:
- CPUProfiler = c_expression.CPUProfiler
- self._cpu_profiler = CPUProfiler.get_instance()
- self._cpu_profiler.init(self._output_path)
- self._cpu_profiler.step_profiling_enable(True)
- if self._device_target and self._device_target == "GPU":
- GPUProfiler = c_expression.GPUProfiler
- self._gpu_profiler = GPUProfiler.get_instance()
- self._gpu_profiler.init(self._output_path)
- self._gpu_profiler.step_profiling_enable(True)
- if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group":
- self._dev_id = str(get_rank())
- os.environ['DEVICE_ID'] = self._dev_id
-
- if kwargs:
- logger.warning("Params not be supported yet on GPU.")
- elif self._device_target and self._device_target == "Ascend":
- optypes_not_deal = kwargs.pop("optypes_not_deal", "Variable")
- if not isinstance(optypes_not_deal, str):
- raise TypeError("The parameter optypes_not_deal must be str.")
- job_dir = kwargs.pop("ascend_job_id", "")
- if job_dir:
- job_dir = validate_and_normalize_path(job_dir)
- if not os.path.exists(job_dir):
- msg = f"Invalid ascend_job_id: {job_dir}, Please pass the absolute path of the JOB dir"
- logger.error(msg)
- raise ValueError(msg)
- self._output_path, _ = os.path.split(job_dir)
- if kwargs:
- logger.warning("There are invalid params which don't work.")
-
- os.environ['DEVICE_ID'] = self._dev_id
- fp_point = os.environ.get("PROFILING_FP_START", "")
- bp_point = os.environ.get("PROFILING_BP_END", "")
-
- profiling_options = {
- "output": self._output_path,
- "fp_point": fp_point,
- "bp_point": bp_point,
- "training_trace": "on",
- "task_trace": "on",
- "aic_metrics": "PipeUtilization",
- "aicpu": "on"
- }
-
- profiling_options = json.dumps(profiling_options)
- # Characters longer than 2048 are ignored, resulting in profiling option resolution errors
- if len(profiling_options) > 2048:
- msg = "The parameter length exceeds the limit (2048), please input valid parameters."
- logger.error(msg)
- raise ValueError(msg)
- # use context interface to open profiling, for the new mindspore version(after 2020.5.21)
- context.set_context(enable_profiling=True, profiling_options=profiling_options)
- base_profiling_container_path = os.path.join(self._output_path, "container")
- container_path = os.path.join(base_profiling_container_path, self._dev_id)
- data_path = os.path.join(container_path, "data")
- data_path = validate_and_normalize_path(data_path)
- if not os.path.exists(data_path):
- os.makedirs(data_path, exist_ok=True)
-
- self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else []
- # add job id env through user input later
- self._job_id_env = 0
- self._start_time = int(time.time() * 10000000)
- logger.info("Profiling: profiling start time: %d", self._start_time)
-
- def analyse(self):
- """
- Collect and analyse performance data, called after training or during training. The example shows above.
- """
- self._cpu_profiler.stop()
- if self._device_target and self._device_target == "GPU":
- self._gpu_analyse()
-
- elif self._device_target and self._device_target == "Ascend":
- self._ascend_analyse()
-
- def _ascend_analyse(self):
- """Collect and analyse ascend performance data"""
- release()
-
- job_id = self._get_profiling_job_id()
- logger.info("Profiling: job id is %s ", job_id)
-
- source_path = os.path.join(self._output_path, job_id)
- # parse hwts.log.data.45.dev file, and get task profiling data
- hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt"
- hwts_output_filename = os.path.join(self._output_path, hwts_output_filename)
- source_path = validate_and_normalize_path(source_path)
- hwts_output_filename = validate_and_normalize_path(hwts_output_filename)
- hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename)
- hwtslog_parser.execute()
-
- # parse Framework file, and get the relation of op and tasks
- framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path)
- framework_parser.parse()
- op_task_dict = framework_parser.to_task_id_full_op_name_dict()
- if not op_task_dict:
- logger.error("Profiling: fail to parse framework files.")
- return
-
- # get op compute time from hwts data and framework data, write output_op_compute_time.txt
- opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt"
- opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename)
- opcompute_output_filename = validate_and_normalize_path(opcompute_output_filename)
- optime_parser = OPComputeTimeParser(
- hwts_output_filename, opcompute_output_filename,
- op_task_dict, self._output_path, self._dev_id
- )
- optime_parser.execute()
-
- # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt
- output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt"
- output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu)
- output_data_preprocess_aicpu = validate_and_normalize_path(output_data_preprocess_aicpu)
- aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu)
- aicpu_data_parser.execute()
-
- # Parsing minddata AICPU profiling
- MinddataParser.execute(source_path, self._output_path, self._dev_id)
-
- # parse minddata pipeline operator and queue
- try:
- pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path)
- pipeline_parser.parse()
- except ProfilerException as err:
- logger.warning(err.message)
-
- # analyse op compute time info
- try:
- self._analyser_op_info()
- except ProfilerException as err:
- logger.warning(err.message)
-
- # analyse step trace info
- points = None
- try:
- points = self._analyse_step_trace(source_path, framework_parser)
- except ProfilerException as err:
- logger.warning(err.message)
-
- # analyse timeline info
- try:
- self._analyse_timeline(aicpu_data_parser, optime_parser, source_path)
- except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
- logger.warning('Fail to write timeline data: %s', err)
-
- # analyse memory usage info
- try:
- self._analyse_memory_usage(points)
- except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err:
- logger.warning(err.message)
-
- os.environ['PROFILING_MODE'] = str("false")
- context.set_context(enable_profiling=False)
-
- def _gpu_analyse(self):
- """Collect and analyse gpu performance data"""
- if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group" and self._dev_id != str(get_rank()):
- self._dev_id = str(get_rank())
- logger.error('Please check the Profiler object initialized after mindspore.context.set_auto_parallel_'
- 'context() and mindspore.communication.management.init(). Profiler should be initialized'
- ' after these code.')
- self._gpu_profiler.stop()
- timeline_generator = self._generate_timeline()
-
- # parse minddata pipeline operator and queue for GPU
- try:
- pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path)
- pipeline_parser.parse()
- except ProfilerException as err:
- logger.warning(err.message)
-
- # analyse step trace info
- try:
- self._analyse_step_trace(is_training_mode_flag=timeline_generator.check_op_name('Gradients'))
- except ProfilerException as err:
- logger.warning(err.message)
-
- os.environ['PROFILING_MODE'] = str("false")
-
- logger.warning(
- '\nMemory Usage is not supported on GPU currently.\n'
- 'Please running on Ascend if you would like to see memory analysis, '
- 'otherwise, this warning can be ignored.'
- )
-
- def _analyse_step_trace(self, source_path=None, framework_parser=None, is_training_mode_flag=True):
- """
- Analyse step trace data and save the result.
-
- Args:
- source_path (str): The directory that contains the step trace original data.
- framework_parser (FrameworkParser): The framework parse instance.
- is_training_mode_flag (bool): Whether in training mode or not.
- """
- logger.info("Begin to parse step trace.")
- # construct output path
- step_trace_intermediate_file_path = os.path.join(
- self._output_path,
- f'step_trace_raw_{self._dev_id}_detail_time.csv'
- )
- point_info_file_path = os.path.join(
- self._output_path,
- 'step_trace_point_info.json'
- )
- step_trace_intermediate_file_path = validate_and_normalize_path(step_trace_intermediate_file_path)
- point_info_file_path = validate_and_normalize_path(point_info_file_path)
-
- if self._device_target and self._device_target == 'GPU':
- input_file_path = os.path.join(
- self._output_path,
- f'step_trace_profiling_{self._dev_id}.txt'
- )
- parser = GpuStepTraceParser(input_dir=input_file_path,
- output_file_path=step_trace_intermediate_file_path,
- is_training_mode=is_training_mode_flag)
- parser.parse_and_save()
- point_info = parser.record_point_info(input_file_path, point_info_file_path)
- else:
- # whether keep the first step
- skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME)
- point_info = framework_parser.point_info
- # recognize inference or traning mode
- is_traning_mode_flag = framework_parser.check_op_name("Gradients")
- # parser the step trace files and save the result to disk
- source_path = validate_and_normalize_path(source_path)
- parser = AscendStepTraceParser(input_dir=source_path,
- output_file_path=step_trace_intermediate_file_path,
- job_id=self._job_id_env,
- skip_first_step=skip_first_step_flag,
- is_training_mode=is_traning_mode_flag)
- parser.update_tag_op_type_map(point_info)
- parser.parse_and_save()
- point_info = parser.record_point_info(point_info, point_info_file_path)
- # print parser result
- parser.show()
- logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path)
- logger.info("The point info is: %s", point_info)
-
- return point_info
-
- def _analyse_timeline(self, aicpu_parser, optime_parser, source_path):
- """
- Analyse and parse timeline info.
-
- Args:
- aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator
- execution time calculation.
- optime_parser (OPComputeTimeParserParser): The parser instance for AI Core
- operator execution time calculation.
- """
- timeline_analyser = AscendTimelineGenerator(self._output_path, self._dev_id)
- # Get framework info
- integrator = Integrator(self._output_path, self._dev_id)
- aicore_detail_data = integrator.get_aicore_detail_data()
- aicore_detail_data_size = len(aicore_detail_data)
- col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph',
- 'full_op_name', 'op_info']
- framework_info = {
- 'col_name': col_names,
- 'object': aicore_detail_data,
- 'size': aicore_detail_data_size
- }
-
- all_reduce_info = integrator.query_for_all_reduce()
-
- # Get timeline info
- logger.info('Start writing timeline info...')
- logger.info('Warm Prompt: It could take a few minutes if you are training '
- 'with a complex network or more than 10 steps.')
- # Add info into timeline, such as AI CPU, AllReduce, framework info.
- aicpu_info = aicpu_parser.query_aicpu_data()
- min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter)
- timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info,
- min_cycle_counter, source_path)
- size_limit = 20 * 1024 * 1024 # 20MB
- timeline_analyser.write_timeline(size_limit)
- timeline_analyser.write_timeline_summary()
-
- def _generate_timeline(self):
- """Used for gpu, generate timeline info, write to json format file."""
- try:
- size_limit = 100 * 1024 * 1024 # 100MB
- timeline_generator = GpuTimelineGenerator(self._output_path, self._dev_id)
- timeline_generator.init_timeline()
- timeline_generator.write_timeline(size_limit)
- timeline_generator.write_timeline_summary()
- return timeline_generator
- except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err:
- logger.warning('Fail to write timeline data: %s', err)
- raise RuntimeError('Fail to write timeline data.')
-
- def _analyse_memory_usage(self, points):
- """Analyse memory usage data."""
- integrator = Integrator(self._output_path, self._dev_id)
- aicore_detail_data = integrator.get_aicore_detail_data()
- memory_parser = MemoryUsageParser(self._output_path, self._dev_id)
- memory_parser.init_memory_usage_info(aicore_detail_data, points)
- memory_parser.write_memory_files()
-
- def _get_profiling_job_id(self):
- """Get profiling job id, which was generated by ada service.
-
- Returns:
- str, profiling job id.
- """
-
- job_id = ""
-
- for item in os.listdir(self._output_path):
- if item.startswith('JOB'):
- path = os.path.join(self._output_path, item)
-
- log_file = get_file_names(path, "host_start.log")
- if not log_file:
- logger.error("Profiling: job path %s, host_start.log not exist.", path)
- continue
-
- training_device_id = log_file[0].split('.')[-1]
- if self._dev_id == training_device_id:
- log_file = os.path.join(path, log_file[0])
- job_start_time = self._parse_host_start_log(log_file)
- if not job_start_time:
- logger.error("Profiling: job path %s, fail to get job start info.", path)
- break
- job_id = item
- if self._start_time > int(job_start_time):
- logger.info("Profiling: job path %s, start_time %s, training start_time %d.",
- path, job_start_time, self._start_time)
- break
- else:
- logger.info("Profiling: job path %s, dev id %s, training device id %s.",
- path, training_device_id, self._dev_id)
-
- if not job_id:
- msg = "Fail to get profiling job, please check whether job dir was generated"
- raise RuntimeError(msg)
-
- return job_id
-
- def _parse_host_start_log(self, input_file):
- """
- Parse host start log file, get the start time of the job.
-
- Args:
- input_file (str): The file path of the host start log file.
-
- Returns:
- str, job start time.
- """
-
- job_start_time = ""
- with open(input_file) as f:
- for line in f.readlines():
- if "clock_realtime" in line:
- # 16 means the first digit of the timestamp, len(line)-3 means the last.
- job_start_time = line[16:len(line)-3]
-
- return job_start_time
-
- def _analyser_op_info(self):
- """Analyse the operator information."""
- integrator = Integrator(self._output_path, self._dev_id)
- integrator.integrate()
-
- aicore_type_result = self._query_op_type_info()
- detail_file_path = os.path.join(
- self._output_path,
- 'output_op_compute_time_detail_{}.txt'.format(self._dev_id)
- )
- fwrite_format(detail_file_path, data_source='title:op compute time')
- display_names = [
- 'optype_name', 'compute_time(ms, per-step)',
- 'called_times(per-step)', 'percent'
- ]
- fwrite_format(detail_file_path, data_source=" ".join(display_names), is_print=True)
- fwrite_format(detail_file_path, data_source=aicore_type_result, is_print=True)
-
- op_type_order = [item[0] for item in aicore_type_result]
- aicore_detail_result = self._query_op_detail_info(op_type_order)
-
- fwrite_format(detail_file_path, data_source='', is_print=True)
- fwrite_format(detail_file_path, data_source='Detail:', is_print=True)
- fwrite_format(detail_file_path, data_source=" ".join(aicore_detail_result.get('col_name_detail')),
- is_print=True)
- fwrite_format(detail_file_path, data_source=aicore_detail_result.get('object'), is_print=True)
-
- def _query_op_type_info(self):
- """
- Query AICORE operator type information.
-
- Returns:
- list[list], the AICORE operator type and execution time information.
- """
- integrator = Integrator(self._output_path, self._dev_id)
- return integrator.get_aicore_data()
-
- def _query_op_detail_info(self, op_type_order):
- """
- Query AICORE operator detail information.
-
- Args:
- op_type_order(list): The name of the op type in order.
-
- Returns:
- dict, the AICORE operator detail information.
- """
-
- op_type_condition = {}
- if self._filt_optype_names:
- op_type_condition['not_in'] = self._filt_optype_names
-
- filter_condition = {
- 'op_type': op_type_condition,
- 'is_display_detail': False,
- }
- integrator = Integrator(self._output_path, self._dev_id)
- return integrator.query_and_sort_by_op_type(filter_condition, op_type_order)
-
- def _get_devid_and_devtarget(self):
- """Get device id and target of this training."""
-
- device_target = ""
- dev_id = ""
- try:
- dev_id = str(context.get_context("device_id"))
- device_target = context.get_context("device_target")
- except ValueError as err:
- logger.error("Profiling: fail to get context, %s", err)
-
- if not dev_id or not dev_id.isdigit():
- dev_id = os.getenv('DEVICE_ID')
- if not dev_id or not dev_id.isdigit():
- dev_id = "0"
- logger.error("Fail to get DEVICE_ID, use 0 instead.")
-
- if device_target and device_target not in ["Ascend", "GPU"]:
- msg = "Profiling: unsupported backend: %s" % device_target
- raise RuntimeError(msg)
-
- self._dev_id = dev_id
- self._device_target = device_target
-
- def _get_output_path(self, kwargs):
- """Get output path of profiling data."""
- current_time = int(time.time())
-
- # to avoid getting different timestamp from different process in multi-card training,
- # set the timestamp as exist timestamp if it's difference is less than 6 seconds.
- def _select_timestamp(dir_name, re_pattern, input_time):
- """select the timestamp from current_time and exist timestamp."""
- timestamp_diff_threshold = 6
- exist_timestamp_list = []
- select_time = input_time
- if not os.path.exists(dir_name):
- os.makedirs(dir_name, exist_ok=True)
- for file_name in os.listdir(dir_name):
- match_res = re_pattern.match(file_name)
- if match_res:
- exist_timestamp_list.append(int(match_res.group(1)))
- if exist_timestamp_list:
- time_diff_list = [input_time - timestamp for timestamp in exist_timestamp_list]
- min_time_diff = min(time_diff_list)
- if min_time_diff <= timestamp_diff_threshold:
- select_time = exist_timestamp_list[time_diff_list.index(min_time_diff)]
-
- return select_time
-
- if "output_path" not in kwargs:
- selected_timestamp = _select_timestamp(os.getcwd(), re.compile(r'data-(\d+)'), current_time)
- output_path = f"data-{selected_timestamp}"
- self._output_path = validate_and_normalize_path(output_path)
- else:
- output_path = kwargs.pop("output_path")
- self._output_path = validate_and_normalize_path(output_path)
- selected_timestamp = _select_timestamp(self._output_path,
- re.compile(r'profiler-(\d+)'), current_time)
-
- self._output_path = os.path.join(self._output_path, f"profiler-{selected_timestamp}")
- if not os.path.exists(self._output_path):
- os.makedirs(self._output_path, exist_ok=True)
- os.chmod(self._output_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)
- else:
- logger.warning("The target dir already exists. "
- "There may be some old profiling data, and they will be rewrote in the end.")
-
- @staticmethod
- def profile(network=None, profile_option=None):
- """
- Get the number of trainable parameters in the training network.
-
- Args:
- network (Cell): The training network.
- profile_option (ProfileOption): The profile option.
-
- Returns:
- dict, the key is the option name, the value is the result of option.
- """
- result = dict()
- if not profile_option:
- raise ValueError("The parameter profile_option must pass a value using ProfileOption.")
-
- if profile_option == ProfileOption.trainable_parameters:
- if not isinstance(network, Cell):
- msg = "Profiling: The network should be an object of nn.Cell"
- raise ValueError(msg)
- param_nums = len(network.parameters_dict())
- result = {"trainable_parameters": param_nums}
- else:
- raise ValueError("Wrong options.")
-
- return result
|