|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """GhostNet model define"""
- from functools import partial
- import math
- import numpy as np
- import mindspore.nn as nn
- from mindspore.ops import operations as P
- from mindspore import Tensor
-
-
- __all__ = ['ghostnet']
-
-
- def _make_divisible(x, divisor=4):
- return int(np.ceil(x * 1. / divisor) * divisor)
-
-
- class MyHSigmoid(nn.Cell):
- """
- Hard Sigmoid definition.
-
- Args:
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> MyHSigmoid()
- """
-
- def __init__(self):
- super(MyHSigmoid, self).__init__()
- self.relu6 = nn.ReLU6()
-
- def construct(self, x):
- return self.relu6(x + 3.) * 0.16666667
-
-
- class Activation(nn.Cell):
- """
- Activation definition.
-
- Args:
- act_func(string): activation name.
-
- Returns:
- Tensor, output tensor.
- """
-
- def __init__(self, act_func):
- super(Activation, self).__init__()
- if act_func == 'relu':
- self.act = nn.ReLU()
- elif act_func == 'relu6':
- self.act = nn.ReLU6()
- elif act_func in ('hsigmoid', 'hard_sigmoid'):
- self.act = MyHSigmoid()
- elif act_func in ('hswish', 'hard_swish'):
- self.act = nn.HSwish()
- else:
- raise NotImplementedError
-
- def construct(self, x):
- return self.act(x)
-
-
- class GlobalAvgPooling(nn.Cell):
- """
- Global avg pooling definition.
-
- Args:
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GlobalAvgPooling()
- """
-
- def __init__(self, keep_dims=False):
- super(GlobalAvgPooling, self).__init__()
- self.mean = P.ReduceMean(keep_dims=keep_dims)
-
- def construct(self, x):
- x = self.mean(x, (2, 3))
- return x
-
-
- class SE(nn.Cell):
- """
- SE warpper definition.
-
- Args:
- num_out (int): Output channel.
- ratio (int): middle output ratio.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> SE(4)
- """
-
- def __init__(self, num_out, ratio=4):
- super(SE, self).__init__()
- num_mid = _make_divisible(num_out // ratio)
- self.pool = GlobalAvgPooling(keep_dims=True)
- self.conv_reduce = nn.Conv2d(in_channels=num_out, out_channels=num_mid,
- kernel_size=1, has_bias=True, pad_mode='pad')
- self.act1 = Activation('relu')
- self.conv_expand = nn.Conv2d(in_channels=num_mid, out_channels=num_out,
- kernel_size=1, has_bias=True, pad_mode='pad')
- self.act2 = Activation('hsigmoid')
- self.mul = P.Mul()
-
- def construct(self, x):
- out = self.pool(x)
- out = self.conv_reduce(out)
- out = self.act1(out)
- out = self.conv_expand(out)
- out = self.act2(out)
- out = self.mul(x, out)
- return out
-
-
- class ConvUnit(nn.Cell):
- """
- ConvUnit warpper definition.
-
- Args:
- num_in (int): Input channel.
- num_out (int): Output channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size.
- padding (int): Padding number.
- num_groups (int): Output num group.
- use_act (bool): Used activation or not.
- act_type (string): Activation type.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> ConvUnit(3, 3)
- """
-
- def __init__(self, num_in, num_out, kernel_size=1, stride=1, padding=0, num_groups=1,
- use_act=True, act_type='relu'):
- super(ConvUnit, self).__init__()
- self.conv = nn.Conv2d(in_channels=num_in,
- out_channels=num_out,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- group=num_groups,
- has_bias=False,
- pad_mode='pad')
- self.bn = nn.BatchNorm2d(num_out)
- self.use_act = use_act
- self.act = Activation(act_type) if use_act else None
-
- def construct(self, x):
- out = self.conv(x)
- out = self.bn(out)
- if self.use_act:
- out = self.act(out)
- return out
-
-
- class GhostModule(nn.Cell):
- """
- GhostModule warpper definition.
-
- Args:
- num_in (int): Input channel.
- num_out (int): Output channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size.
- padding (int): Padding number.
- ratio (int): Reduction ratio.
- dw_size (int): kernel size of cheap operation.
- use_act (bool): Used activation or not.
- act_type (string): Activation type.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GhostModule(3, 3)
- """
-
- def __init__(self, num_in, num_out, kernel_size=1, stride=1, padding=0, ratio=2, dw_size=3,
- use_act=True, act_type='relu'):
- super(GhostModule, self).__init__()
- init_channels = math.ceil(num_out / ratio)
- new_channels = init_channels * (ratio - 1)
-
- self.primary_conv = ConvUnit(num_in, init_channels, kernel_size=kernel_size, stride=stride, padding=padding,
- num_groups=1, use_act=use_act, act_type='relu')
- self.cheap_operation = ConvUnit(init_channels, new_channels, kernel_size=dw_size, stride=1, padding=dw_size//2,
- num_groups=init_channels, use_act=use_act, act_type='relu')
- self.concat = P.Concat(axis=1)
-
- def construct(self, x):
- x1 = self.primary_conv(x)
- x2 = self.cheap_operation(x1)
- return self.concat((x1, x2))
-
-
- class GhostBottleneck(nn.Cell):
- """
- GhostBottleneck warpper definition.
-
- Args:
- num_in (int): Input channel.
- num_mid (int): Middle channel.
- num_out (int): Output channel.
- kernel_size (int): Input kernel size.
- stride (int): Stride size.
- act_type (str): Activation type.
- use_se (bool): Use SE warpper or not.
-
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GhostBottleneck(16, 3, 1, 1)
- """
-
- def __init__(self, num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False):
- super(GhostBottleneck, self).__init__()
- self.ghost1 = GhostModule(num_in, num_mid, kernel_size=1,
- stride=1, padding=0, act_type=act_type)
-
- self.use_dw = stride > 1
- self.dw = None
- if self.use_dw:
- self.dw = ConvUnit(num_mid, num_mid, kernel_size=kernel_size, stride=stride,
- padding=self._get_pad(kernel_size), act_type=act_type, num_groups=num_mid, use_act=False)
-
- self.use_se = use_se
- if use_se:
- self.se = SE(num_mid)
-
- self.ghost2 = GhostModule(num_mid, num_out, kernel_size=1, stride=1,
- padding=0, act_type=act_type, use_act=False)
-
- self.down_sample = False
- if num_in != num_out or stride != 1:
- self.down_sample = True
- self.shortcut = None
- if self.down_sample:
- self.shortcut = nn.SequentialCell([
- ConvUnit(num_in, num_in, kernel_size=kernel_size, stride=stride,
- padding=self._get_pad(kernel_size), num_groups=num_in, use_act=False),
- ConvUnit(num_in, num_out, kernel_size=1, stride=1,
- padding=0, num_groups=1, use_act=False),
- ])
- self.add = P.TensorAdd()
-
- def construct(self, x):
- r"""construct of ghostnet"""
- shortcut = x
- out = self.ghost1(x)
- if self.use_dw:
- out = self.dw(out)
- if self.use_se:
- out = self.se(out)
- out = self.ghost2(out)
- if self.down_sample:
- shortcut = self.shortcut(shortcut)
- out = self.add(shortcut, out)
- return out
-
- def _get_pad(self, kernel_size):
- """set the padding number"""
- pad = 0
- if kernel_size == 1:
- pad = 0
- elif kernel_size == 3:
- pad = 1
- elif kernel_size == 5:
- pad = 2
- elif kernel_size == 7:
- pad = 3
- else:
- raise NotImplementedError
- return pad
-
-
- class GhostNet(nn.Cell):
- """
- GhostNet architecture.
-
- Args:
- model_cfgs (Cell): number of classes.
- num_classes (int): Output number classes.
- multiplier (int): Channels multiplier for round to 8/16 and others. Default is 1.
- final_drop (float): Dropout number.
- round_nearest (list): Channel round to . Default is 8.
- Returns:
- Tensor, output tensor.
-
- Examples:
- >>> GhostNet(num_classes=1000)
- """
-
- def __init__(self, model_cfgs, num_classes=1000, multiplier=1., final_drop=0., round_nearest=8):
- super(GhostNet, self).__init__()
- self.cfgs = model_cfgs['cfg']
- self.inplanes = 16
- first_conv_in_channel = 3
- first_conv_out_channel = _make_divisible(multiplier * self.inplanes)
-
- self.conv_stem = nn.Conv2d(in_channels=first_conv_in_channel,
- out_channels=first_conv_out_channel,
- kernel_size=3, padding=1, stride=2,
- has_bias=False, pad_mode='pad')
- self.bn1 = nn.BatchNorm2d(first_conv_out_channel)
- self.act1 = Activation('relu')
-
- self.blocks = []
- for layer_cfg in self.cfgs:
- self.blocks.append(self._make_layer(kernel_size=layer_cfg[0],
- exp_ch=_make_divisible(
- multiplier * layer_cfg[1]),
- out_channel=_make_divisible(
- multiplier * layer_cfg[2]),
- use_se=layer_cfg[3],
- act_func=layer_cfg[4],
- stride=layer_cfg[5]))
- output_channel = _make_divisible(
- multiplier * model_cfgs["cls_ch_squeeze"])
- self.blocks.append(ConvUnit(_make_divisible(multiplier * self.cfgs[-1][2]), output_channel,
- kernel_size=1, stride=1, padding=0, num_groups=1, use_act=True))
- self.blocks = nn.SequentialCell(self.blocks)
-
- self.global_pool = GlobalAvgPooling(keep_dims=True)
- self.conv_head = nn.Conv2d(in_channels=output_channel,
- out_channels=model_cfgs['cls_ch_expand'],
- kernel_size=1, padding=0, stride=1,
- has_bias=True, pad_mode='pad')
- self.act2 = Activation('relu')
- self.squeeze = P.Flatten()
- self.final_drop = final_drop
- if self.final_drop > 0:
- self.dropout = nn.Dropout(self.final_drop)
-
- self.classifier = nn.Dense(
- model_cfgs['cls_ch_expand'], num_classes, has_bias=True)
-
- self._initialize_weights()
-
- def construct(self, x):
- r"""construct of GhostNet"""
- x = self.conv_stem(x)
- x = self.bn1(x)
- x = self.act1(x)
- x = self.blocks(x)
- x = self.global_pool(x)
- x = self.conv_head(x)
- x = self.act2(x)
- x = self.squeeze(x)
- if self.final_drop > 0:
- x = self.dropout(x)
- x = self.classifier(x)
- return x
-
- def _make_layer(self, kernel_size, exp_ch, out_channel, use_se, act_func, stride=1):
- mid_planes = exp_ch
- out_planes = out_channel
- layer = GhostBottleneck(self.inplanes, mid_planes, out_planes,
- kernel_size, stride=stride, act_type=act_func, use_se=use_se)
- self.inplanes = out_planes
- return layer
-
- def _initialize_weights(self):
- """
- Initialize weights.
-
- Args:
-
- Returns:
- None.
-
- Examples:
- >>> _initialize_weights()
- """
- self.init_parameters_data()
- for _, m in self.cells_and_names():
- if isinstance(m, (nn.Conv2d)):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
- m.weight.data.shape).astype("float32")))
- if m.bias is not None:
- m.bias.set_parameter_data(
- Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
- elif isinstance(m, nn.BatchNorm2d):
- m.gamma.set_parameter_data(
- Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
- m.beta.set_parameter_data(
- Tensor(np.zeros(m.beta.data.shape, dtype="float32")))
- elif isinstance(m, nn.Dense):
- m.weight.set_parameter_data(Tensor(np.random.normal(
- 0, 0.01, m.weight.data.shape).astype("float32")))
- if m.bias is not None:
- m.bias.set_parameter_data(
- Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
-
-
- def ghostnet(model_name, **kwargs):
- """
- Constructs a GhostNet model
- """
- model_cfgs = {
- "1x": {
- "cfg": [
- # k, exp, c, se, nl, s,
- # stage1
- [3, 16, 16, False, 'relu', 1],
- # stage2
- [3, 48, 24, False, 'relu', 2],
- [3, 72, 24, False, 'relu', 1],
- # stage3
- [5, 72, 40, True, 'relu', 2],
- [5, 120, 40, True, 'relu', 1],
- # stage4
- [3, 240, 80, False, 'relu', 2],
- [3, 200, 80, False, 'relu', 1],
- [3, 184, 80, False, 'relu', 1],
- [3, 184, 80, False, 'relu', 1],
- [3, 480, 112, True, 'relu', 1],
- [3, 672, 112, True, 'relu', 1],
- # stage5
- [5, 672, 160, True, 'relu', 2],
- [5, 960, 160, False, 'relu', 1],
- [5, 960, 160, True, 'relu', 1],
- [5, 960, 160, False, 'relu', 1],
- [5, 960, 160, True, 'relu', 1]],
- "cls_ch_squeeze": 960,
- "cls_ch_expand": 1280,
- },
-
- "nose_1x": {
- "cfg": [
- # k, exp, c, se, nl, s,
- # stage1
- [3, 16, 16, False, 'relu', 1],
- # stage2
- [3, 48, 24, False, 'relu', 2],
- [3, 72, 24, False, 'relu', 1],
- # stage3
- [5, 72, 40, False, 'relu', 2],
- [5, 120, 40, False, 'relu', 1],
- # stage4
- [3, 240, 80, False, 'relu', 2],
- [3, 200, 80, False, 'relu', 1],
- [3, 184, 80, False, 'relu', 1],
- [3, 184, 80, False, 'relu', 1],
- [3, 480, 112, False, 'relu', 1],
- [3, 672, 112, False, 'relu', 1],
- # stage5
- [5, 672, 160, False, 'relu', 2],
- [5, 960, 160, False, 'relu', 1],
- [5, 960, 160, False, 'relu', 1],
- [5, 960, 160, False, 'relu', 1],
- [5, 960, 160, False, 'relu', 1]],
- "cls_ch_squeeze": 960,
- "cls_ch_expand": 1280,
- }
- }
-
- return GhostNet(model_cfgs[model_name], **kwargs)
-
-
- ghostnet_1x = partial(ghostnet, model_name="1x", final_drop=0.8)
- ghostnet_nose_1x = partial(ghostnet, model_name="nose_1x", final_drop=0.8)
|