|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- dataset processing.
- """
- import os
- from PIL import Image, ImageFile
- from mindspore.common import dtype as mstype
- import mindspore.dataset as de
- import mindspore.dataset.transforms.c_transforms as C
- import mindspore.dataset.vision.c_transforms as vision
- from src.utils.sampler import DistributedSampler
-
- ImageFile.LOAD_TRUNCATED_IMAGES = True
-
-
- def vgg_create_dataset(data_home, image_size, batch_size, rank_id=0, rank_size=1, repeat_num=1, training=True):
- """Data operations."""
- data_dir = os.path.join(data_home, "cifar-10-batches-bin")
- if not training:
- data_dir = os.path.join(data_home, "cifar-10-verify-bin")
-
- data_set = de.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
-
- rescale = 1.0 / 255.0
- shift = 0.0
-
- # define map operations
- random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
- random_horizontal_op = vision.RandomHorizontalFlip()
- resize_op = vision.Resize(image_size) # interpolation default BILINEAR
- rescale_op = vision.Rescale(rescale, shift)
- normalize_op = vision.Normalize((0.4465, 0.4822, 0.4914), (0.2010, 0.1994, 0.2023))
- changeswap_op = vision.HWC2CHW()
- type_cast_op = C.TypeCast(mstype.int32)
-
- c_trans = []
- if training:
- c_trans = [random_crop_op, random_horizontal_op]
- c_trans += [resize_op, rescale_op, normalize_op,
- changeswap_op]
-
- # apply map operations on images
- data_set = data_set.map(operations=type_cast_op, input_columns="label")
- data_set = data_set.map(operations=c_trans, input_columns="image")
-
- # apply repeat operations
- data_set = data_set.repeat(repeat_num)
-
- # apply shuffle operations
- data_set = data_set.shuffle(buffer_size=10)
-
- # apply batch operations
- data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
-
- return data_set
-
-
- def classification_dataset(data_dir, image_size, per_batch_size, rank=0, group_size=1,
- mode='train',
- input_mode='folder',
- root='',
- num_parallel_workers=None,
- shuffle=None,
- sampler=None,
- repeat_num=1,
- class_indexing=None,
- drop_remainder=True,
- transform=None,
- target_transform=None):
- """
- A function that returns a dataset for classification. The mode of input dataset could be "folder" or "txt".
- If it is "folder", all images within one folder have the same label. If it is "txt", all paths of images
- are written into a textfile.
-
- Args:
- data_dir (str): Path to the root directory that contains the dataset for "input_mode="folder"".
- Or path of the textfile that contains every image's path of the dataset.
- image_size (Union(int, sequence)): Size of the input images.
- per_batch_size (int): the batch size of evey step during training.
- rank (int): The shard ID within num_shards (default=None).
- group_size (int): Number of shards that the dataset should be divided
- into (default=None).
- mode (str): "train" or others. Default: " train".
- input_mode (str): The form of the input dataset. "folder" or "txt". Default: "folder".
- root (str): the images path for "input_mode="txt"". Default: " ".
- num_parallel_workers (int): Number of workers to read the data. Default: None.
- shuffle (bool): Whether or not to perform shuffle on the dataset
- (default=None, performs shuffle).
- sampler (Sampler): Object used to choose samples from the dataset. Default: None.
- repeat_num (int): the num of repeat dataset.
- class_indexing (dict): A str-to-int mapping from folder name to index
- (default=None, the folder names will be sorted
- alphabetically and each class will be given a
- unique index starting from 0).
-
- Examples:
- >>> from src.dataset import classification_dataset
- >>> # path to imagefolder directory. This directory needs to contain sub-directories which contain the images
- >>> data_dir = "/path/to/imagefolder_directory"
- >>> de_dataset = classification_dataset(data_dir, image_size=[224, 244],
- >>> per_batch_size=64, rank=0, group_size=4)
- >>> # Path of the textfile that contains every image's path of the dataset.
- >>> data_dir = "/path/to/dataset/images/train.txt"
- >>> images_dir = "/path/to/dataset/images"
- >>> de_dataset = classification_dataset(data_dir, image_size=[224, 244],
- >>> per_batch_size=64, rank=0, group_size=4,
- >>> input_mode="txt", root=images_dir)
- """
-
- mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
- std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
-
- if transform is None:
- if mode == 'train':
- transform_img = [
- vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0)),
- vision.RandomHorizontalFlip(prob=0.5),
- vision.Normalize(mean=mean, std=std),
- vision.HWC2CHW()
- ]
- else:
- transform_img = [
- vision.Decode(),
- vision.Resize((256, 256)),
- vision.CenterCrop(image_size),
- vision.Normalize(mean=mean, std=std),
- vision.HWC2CHW()
- ]
- else:
- transform_img = transform
-
- if target_transform is None:
- transform_label = [C.TypeCast(mstype.int32)]
- else:
- transform_label = target_transform
-
- if input_mode == 'folder':
- de_dataset = de.ImageFolderDataset(data_dir, num_parallel_workers=num_parallel_workers,
- shuffle=shuffle, sampler=sampler, class_indexing=class_indexing,
- num_shards=group_size, shard_id=rank)
- else:
- dataset = TxtDataset(root, data_dir)
- sampler = DistributedSampler(dataset, rank, group_size, shuffle=shuffle)
- de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler)
-
- de_dataset = de_dataset.map(operations=transform_img, input_columns="image", num_parallel_workers=8)
- de_dataset = de_dataset.map(operations=transform_label, input_columns="label", num_parallel_workers=8)
-
- columns_to_project = ["image", "label"]
- de_dataset = de_dataset.project(columns=columns_to_project)
-
- de_dataset = de_dataset.batch(per_batch_size, drop_remainder=drop_remainder)
- de_dataset = de_dataset.repeat(repeat_num)
-
- return de_dataset
-
-
- class TxtDataset:
- """
- create txt dataset.
-
- Args:
- Returns:
- de_dataset.
- """
- def __init__(self, root, txt_name):
- super(TxtDataset, self).__init__()
- self.imgs = []
- self.labels = []
- fin = open(txt_name, "r")
- for line in fin:
- img_name, label = line.strip().split(' ')
- self.imgs.append(os.path.join(root, img_name))
- self.labels.append(int(label))
- fin.close()
-
- def __getitem__(self, index):
- img = Image.open(self.imgs[index]).convert('RGB')
- return img, self.labels[index]
-
- def __len__(self):
- return len(self.imgs)
|