|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test loss """
- import numpy as np
- import mindspore
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.nn.loss.loss import _Loss
- from mindspore.nn.loss.loss import L1Loss
- import mindspore.context as context
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
-
- class WeightedLoss(_Loss):
- def __init__(self, reduction='mean', weights=1.0):
- super(WeightedLoss, self).__init__(reduction)
- self.abs = P.Abs()
- self.weights = weights
-
- def construct(self, base, target):
- x = self.abs(base - target)
- return self.get_loss(x, self.weights)
-
- def test_WeightedLoss():
- loss = WeightedLoss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
- output_data = loss(input_data, target_data)
-
- error_range = np.ones(shape=output_data.shape) * 10e-6
- loss = WeightedLoss(weights=2.0)
- test_output = loss(input_data, target_data)
- diff = test_output - output_data * 2.0
- assert np.all(abs(diff.asnumpy()) < error_range)
-
- loss = WeightedLoss(weights=3)
- test_output = loss(input_data, target_data)
- diff = test_output - output_data * 3
- assert np.all(abs(diff.asnumpy()) < error_range)
-
- loss = WeightedLoss(weights=Tensor(np.array([[0.7, 0.3], [0.7, 0.3]])))
- y_true = Tensor(np.array([[0., 1.], [0., 0.]]), mindspore.float32)
- y_pred = Tensor(np.array([[1., 1.], [1., 0.]]), mindspore.float32)
- test_data = 0.35
- output = loss(y_true, y_pred)
- diff = test_data - output.asnumpy()
- assert np.all(abs(diff) < error_range)
-
- class CustomLoss(_Loss):
- def __init__(self, reduction='mean'):
- super(CustomLoss, self).__init__(reduction)
- self.abs = P.Abs()
-
- def construct(self, base, target):
- x = self.abs(base - target)
- return self.get_loss(x, weights=2.0)
-
- def test_CustomLoss():
- loss = L1Loss()
- input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32))
- target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32))
- output_data = loss(input_data, target_data)
-
- error_range = np.ones(shape=output_data.shape) * 10e-6
- customloss = CustomLoss()
- test_output = customloss(input_data, target_data)
- diff = test_output - output_data * 2.0
- assert np.all(abs(diff.asnumpy()) < error_range)
|