|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor, Model, ms_function
- from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
- from mindspore.ops import operations as P
-
- context.set_context(device_target="Ascend")
-
- input_channel = 2048
- output_channel = 512
- num_class = 10
- batch_size = 32
-
-
- class MsWrapper(nn.Cell):
- def __init__(self, network):
- super(MsWrapper, self).__init__(auto_prefix=False)
- self._network = network
-
- @ms_function
- def construct(self, *args):
- return self._network(*args)
-
-
- def me_train_tensor(net, input_np, label_np, epoch_size=2):
- loss = SoftmaxCrossEntropyWithLogits(sparse=True)
- opt = nn.Momentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
- filter(lambda x: x.requires_grad, net.get_parameters()))
- context.set_context(mode=context.GRAPH_MODE)
- Model(net, loss, opt)
- _network = nn.WithLossCell(net, loss)
- _train_net = MsWrapper(nn.TrainOneStepCell(_network, opt))
- _train_net.set_train()
- for epoch in range(0, epoch_size):
- print(f"epoch %d" % (epoch))
- output = _train_net(Tensor(input_np), Tensor(label_np))
- print(output.asnumpy())
-
-
- def test_conv_bn_add_relu_fusion():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(input_channel, output_channel,
- kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
- self.conv1 = nn.Conv2d(input_channel, output_channel,
- kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
- self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
- self.add = P.TensorAdd()
- self.relu = P.ReLU()
- self.mean = P.ReduceMean(keep_dims=True)
- self.reshape = P.Reshape()
- self.dense = nn.Dense(output_channel, num_class)
-
- def construct(self, input_x):
- output = self.conv(input_x)
- output = self.bn(output)
- output = self.add(output, self.conv1(input_x))
- output = self.relu(output)
- output = self.mean(output, (-2, -1))
- output = self.reshape(output, (batch_size, output_channel))
- output = self.dense(output)
- return output
-
- net = Net()
- input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
- label_np = np.ones([batch_size]).astype(np.int32)
- me_train_tensor(net, input_np, label_np)
-
-
- def test_conv_bn_relu_fusion():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(input_channel, output_channel,
- kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
- self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
- self.relu = P.ReLU()
- self.mean = P.ReduceMean(keep_dims=True)
- self.reshape = P.Reshape()
- self.dense = nn.Dense(output_channel, num_class)
-
- def construct(self, input_x):
- output = self.conv(input_x)
- output = self.bn(output)
- output = self.relu(output)
- output = self.mean(output, (-2, -1))
- output = self.reshape(output, (batch_size, output_channel))
- output = self.dense(output)
- return output
-
- net = Net()
- input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
- label_np = np.ones([batch_size]).astype(np.int32)
- me_train_tensor(net, input_np, label_np)
-
-
- def test_conv_bn_fusion():
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.conv = nn.Conv2d(input_channel, output_channel,
- kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
- self.bn = nn.BatchNorm2d(output_channel, momentum=0.1, eps=0.0001)
- self.mean = P.ReduceMean(keep_dims=True)
- self.reshape = P.Reshape()
- self.dense = nn.Dense(output_channel, num_class)
-
- def construct(self, input_x):
- output = self.conv(input_x)
- output = self.bn(output)
- output = self.mean(output, (-2, -1))
- output = self.reshape(output, (batch_size, output_channel))
- output = self.dense(output)
- return output
-
- net = Net()
- input_np = np.ones([batch_size, input_channel, 7, 7]).astype(np.float32) * 0.01
- label_np = np.ones([batch_size]).astype(np.int32)
- me_train_tensor(net, input_np, label_np)
|