|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import os
-
- import numpy as np
-
- import mindspore.communication.management as distributedTool
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.nn.metrics import Accuracy
- from mindspore.train import Model
- from mindspore.train.callback import LossMonitor, TimeMonitor
- from model_zoo.official.cv.lenet.src.dataset import create_dataset
- from model_zoo.official.cv.lenet.src.lenet import LeNet5
-
- np.set_printoptions(threshold=np.inf)
- device_num = 2
- device_id = int(os.getenv('DEVICE_ID'))
- rank_id = 0
-
-
- def setup_module():
- global device_num
- global rank_id
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- context.set_context(device_id=device_id)
- distributedTool.init()
- rank_id = distributedTool.get_rank()
- device_num = distributedTool.get_group_size()
- context.set_auto_parallel_context(device_num=device_num, global_rank=device_id, parameter_broadcast=True)
-
-
- def teardown_module():
- distributedTool.release()
-
-
- def test_all_trains():
- ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
-
- network = LeNet5(10)
- net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
-
- model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
-
- print("============== Starting Training ==============")
- model.train(1, ds_train, callbacks=[time_cb, LossMonitor()])
|