|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """quantization aware."""
-
- import copy
- import re
-
- import numpy as np
- import mindspore.context as context
-
- from ... import log as logger
- from ... import nn, ops
- from ..._checkparam import ParamValidator as validator
- from ..._checkparam import Rel
- from ...common import Tensor
- from ...common import dtype as mstype
- from ...common.api import _executor
- from ...nn.layer import quant
- from ...ops import functional as F
- from ...ops import operations as P
- from ...ops.operations import _inner_ops as inner
- from ...train import serialization
- from . import quant_utils
-
- _ACTIVATION_MAP = {nn.ReLU: quant.ActQuant,
- nn.ReLU6: quant.ActQuant,
- nn.Sigmoid: quant.ActQuant,
- nn.LeakyReLU: quant.LeakyReLUQuant,
- nn.HSigmoid: quant.HSigmoidQuant,
- nn.HSwish: quant.HSwishQuant}
-
-
- class _AddFakeQuantInput(nn.Cell):
- """
- Add FakeQuant OP at input of the network. Only support one input case.
- """
-
- def __init__(self, network, quant_delay=0):
- super(_AddFakeQuantInput, self).__init__(auto_prefix=False)
- self.fake_quant_input = quant.FakeQuantWithMinMax(min_init=-6, max_init=6, quant_delay=quant_delay, ema=True)
- self.fake_quant_input.update_parameters_name('fake_quant_input.')
- self.network = network
-
- def construct(self, data):
- data = self.fake_quant_input(data)
- output = self.network(data)
- return output
-
-
- class _AddFakeQuantAfterSubCell(nn.Cell):
- """
- Add FakeQuant OP after of the sub Cell.
- """
-
- def __init__(self, subcell, **kwargs):
- super(_AddFakeQuantAfterSubCell, self).__init__(auto_prefix=False)
- self.subcell = subcell
- self.fake_quant_act = quant.FakeQuantWithMinMax(min_init=-6,
- max_init=6,
- ema=True,
- num_bits=kwargs["num_bits"],
- quant_delay=kwargs["quant_delay"],
- per_channel=kwargs["per_channel"],
- symmetric=kwargs["symmetric"],
- narrow_range=kwargs["narrow_range"])
-
- def construct(self, *data):
- output = self.subcell(*data)
- output = self.fake_quant_act(output)
- return output
-
-
- class ConvertToQuantNetwork:
- """
- Convert network to quantization aware network
- """
- __quant_op_name__ = ["TensorAdd", "Sub", "Mul", "RealDiv"]
-
- def __init__(self, **kwargs):
- self.network = validator.check_isinstance('network', kwargs["network"], (nn.Cell,))
- self.weight_qdelay = validator.check_integer("quant delay", kwargs["quant_delay"][0], 0, Rel.GE)
- self.act_qdelay = validator.check_integer("quant delay", kwargs["quant_delay"][-1], 0, Rel.GE)
- self.bn_fold = validator.check_bool("bn fold", kwargs["bn_fold"])
- self.freeze_bn = validator.check_integer("freeze bn", kwargs["freeze_bn"], 0, Rel.GE)
- self.weight_bits = validator.check_integer("weights bit", kwargs["num_bits"][0], 0, Rel.GE)
- self.act_bits = validator.check_integer("activations bit", kwargs["num_bits"][-1], 0, Rel.GE)
- self.weight_channel = validator.check_bool("per channel", kwargs["per_channel"][0])
- self.act_channel = validator.check_bool("per channel", kwargs["per_channel"][-1])
- self.weight_symmetric = validator.check_bool("symmetric", kwargs["symmetric"][0])
- self.act_symmetric = validator.check_bool("symmetric", kwargs["symmetric"][-1])
- self.weight_range = validator.check_bool("narrow range", kwargs["narrow_range"][0])
- self.act_range = validator.check_bool("narrow range", kwargs["narrow_range"][-1])
- self._convert_method_map = {quant.Conv2dBnAct: self._convert_conv,
- quant.DenseBnAct: self._convert_dense}
-
- def _convert_op_name(self, name):
- pattern = re.compile(r'([A-Z]{1})')
- name_new = re.sub(pattern, r'_\1', name).lower()
- if name_new[0] == '_':
- name_new = name_new[1:]
- return name_new
-
- def run(self):
- self.network.update_cell_prefix()
- network = self._convert_subcells2quant(self.network)
- self.network.update_cell_type("quant")
- return network
-
- def _convert_subcells2quant(self, network):
- """
- convert sub cell like `Conv2dBnAct` and `DenseBnAct` to quant cell
- """
- cells = network.name_cells()
- change = False
- for name in cells:
- subcell = cells[name]
- if subcell == network:
- continue
- elif isinstance(subcell, (quant.Conv2dBnAct, quant.DenseBnAct)):
- prefix = subcell.param_prefix
- new_subcell = self._convert_method_map[type(subcell)](subcell)
- new_subcell.update_parameters_name(prefix + '.')
- network.insert_child_to_cell(name, new_subcell)
- change = True
- else:
- self._convert_subcells2quant(subcell)
- if isinstance(network, nn.SequentialCell) and change:
- network.cell_list = list(network.cells())
-
- # add FakeQuant OP after OP in while list
- add_list = []
- for name in network.__dict__:
- if name[0] == '_':
- continue
- attr = network.__dict__[name]
- if isinstance(attr, ops.Primitive) and attr.name in self.__quant_op_name__:
- add_list.append((name, attr))
- for name, prim_op in add_list:
- prefix = name
- add_quant = _AddFakeQuantAfterSubCell(prim_op,
- num_bits=self.act_bits,
- quant_delay=self.act_qdelay,
- per_channel=self.act_channel,
- symmetric=self.act_symmetric,
- narrow_range=self.act_range)
- prefix = self._convert_op_name(prim_op.name)
- if network.param_prefix:
- prefix = '.'.join([network.param_prefix, self._convert_op_name(prim_op.name)])
- add_quant.update_parameters_name(prefix + '.')
- del network.__dict__[name]
- network.insert_child_to_cell(name, add_quant)
- return network
-
- def _convert_conv(self, subcell):
- """
- convert Conv2d cell to quant cell
- """
- conv_inner = subcell.conv
- if subcell.has_bn:
- if self.bn_fold:
- bn_inner = subcell.batchnorm
- conv_inner = quant.Conv2dBnFoldQuant(conv_inner.in_channels,
- conv_inner.out_channels,
- kernel_size=conv_inner.kernel_size,
- stride=conv_inner.stride,
- pad_mode=conv_inner.pad_mode,
- padding=conv_inner.padding,
- dilation=conv_inner.dilation,
- group=conv_inner.group,
- eps=bn_inner.eps,
- momentum=bn_inner.momentum,
- quant_delay=self.weight_qdelay,
- freeze_bn=self.freeze_bn,
- per_channel=self.weight_channel,
- num_bits=self.weight_bits,
- fake=True,
- symmetric=self.weight_symmetric,
- narrow_range=self.weight_range,
- has_bias=conv_inner.has_bias,
- bias_init=conv_inner.bias_init)
- # change original network BatchNormal OP parameters to quant network
- conv_inner.gamma = subcell.batchnorm.gamma
- conv_inner.beta = subcell.batchnorm.beta
- conv_inner.moving_mean = subcell.batchnorm.moving_mean
- conv_inner.moving_variance = subcell.batchnorm.moving_variance
- del subcell.batchnorm
- subcell.batchnorm = None
- subcell.has_bn = False
- else:
- bn_inner = subcell.batchnorm
- conv_inner = quant.Conv2dBnWithoutFoldQuant(conv_inner.in_channels,
- conv_inner.out_channels,
- kernel_size=conv_inner.kernel_size,
- stride=conv_inner.stride,
- pad_mode=conv_inner.pad_mode,
- padding=conv_inner.padding,
- dilation=conv_inner.dilation,
- group=conv_inner.group,
- eps=bn_inner.eps,
- momentum=bn_inner.momentum,
- quant_delay=self.weight_qdelay,
- per_channel=self.weight_channel,
- num_bits=self.weight_bits,
- symmetric=self.weight_symmetric,
- narrow_range=self.weight_range,
- has_bias=conv_inner.has_bias,
- bias_init=conv_inner.bias_init)
- # change original network BatchNormal OP parameters to quant network
- conv_inner.batchnorm.gamma = subcell.batchnorm.gamma
- conv_inner.batchnorm.beta = subcell.batchnorm.beta
- conv_inner.batchnorm.moving_mean = subcell.batchnorm.moving_mean
- conv_inner.batchnorm.moving_variance = subcell.batchnorm.moving_variance
- del subcell.batchnorm
- subcell.batchnorm = None
- subcell.has_bn = False
- else:
- conv_inner = quant.Conv2dQuant(conv_inner.in_channels,
- conv_inner.out_channels,
- kernel_size=conv_inner.kernel_size,
- stride=conv_inner.stride,
- pad_mode=conv_inner.pad_mode,
- padding=conv_inner.padding,
- dilation=conv_inner.dilation,
- group=conv_inner.group,
- has_bias=conv_inner.has_bias,
- quant_delay=self.weight_qdelay,
- per_channel=self.weight_channel,
- num_bits=self.weight_bits,
- symmetric=self.weight_symmetric,
- narrow_range=self.weight_range)
- # change original network Conv2D OP parameters to quant network
- conv_inner.weight = subcell.conv.weight
- if subcell.conv.has_bias:
- conv_inner.bias = subcell.conv.bias
- subcell.conv = conv_inner
- if subcell.has_act and subcell.activation is not None:
- subcell.activation = self._convert_activation(subcell.activation)
- elif subcell.after_fake:
- subcell.has_act = True
- subcell.activation = _AddFakeQuantAfterSubCell(F.identity,
- num_bits=self.act_bits,
- quant_delay=self.act_qdelay,
- per_channel=self.act_channel,
- symmetric=self.act_symmetric,
- narrow_range=self.act_range)
- return subcell
-
- def _convert_dense(self, subcell):
- """
- convert dense cell to combine dense cell
- """
- dense_inner = subcell.dense
- dense_inner = quant.DenseQuant(dense_inner.in_channels,
- dense_inner.out_channels,
- has_bias=dense_inner.has_bias,
- num_bits=self.weight_bits,
- quant_delay=self.weight_qdelay,
- per_channel=self.weight_channel,
- symmetric=self.weight_symmetric,
- narrow_range=self.weight_range)
- # change original network Dense OP parameters to quant network
- dense_inner.weight = subcell.dense.weight
- if subcell.dense.has_bias:
- dense_inner.bias = subcell.dense.bias
- subcell.dense = dense_inner
- if subcell.has_act and subcell.activation is not None:
- subcell.activation = self._convert_activation(subcell.activation)
- elif subcell.after_fake:
- subcell.has_act = True
- subcell.activation = _AddFakeQuantAfterSubCell(F.identity,
- num_bits=self.act_bits,
- quant_delay=self.act_qdelay,
- per_channel=self.act_channel,
- symmetric=self.act_symmetric,
- narrow_range=self.act_range)
- return subcell
-
- def _convert_activation(self, activation):
- act_class = activation.__class__
- if act_class not in _ACTIVATION_MAP:
- raise ValueError("Unsupported activation in auto quant: ", act_class)
- return _ACTIVATION_MAP[act_class](activation=activation,
- num_bits=self.act_bits,
- quant_delay=self.act_qdelay,
- per_channel=self.act_channel,
- symmetric=self.act_symmetric,
- narrow_range=self.act_range)
-
-
- class ExportToQuantInferNetwork:
- """
- Convert quantization aware network to infer network.
-
- Args:
- network (Cell): MindSpore network API `convert_quant_network`.
- inputs (Tensor): Input tensors of the `quantization aware training network`.
- mean (int): Input data mean. Default: 127.5.
- std_dev (int, float): Input data variance. Default: 127.5.
- is_mindir (bool): Whether is MINDIR format. Default: False.
-
- Returns:
- Cell, Infer network.
- """
- __quant_op_name__ = ["TensorAdd", "Sub", "Mul", "RealDiv"]
-
- def __init__(self, network, mean, std_dev, *inputs, is_mindir=False):
- network = validator.check_isinstance('network', network, (nn.Cell,))
- self.input_scale = 1 / std_dev
- self.input_zero_point = round(mean)
- self.data_type = mstype.int8
- self.network = copy.deepcopy(network)
- self.all_parameters = {p.name: p for p in self.network.get_parameters()}
- self.get_inputs_table(inputs)
- self.mean = mean
- self.std_dev = std_dev
- self.is_mindir = is_mindir
-
- def get_inputs_table(self, inputs):
- """Get the support info for quant export."""
- phase_name = 'export_quant'
- graph_id, _ = _executor.compile(self.network, *inputs, phase=phase_name, do_convert=False)
- self.quant_info_table = _executor.fetch_info_for_quant_export(graph_id)
-
- def run(self):
- """Start to convert."""
- self.network.update_cell_prefix()
- network = self.network
- if isinstance(network, _AddFakeQuantInput):
- network = network.network
- network = self._convert_quant2deploy(network)
- return network
-
- def _get_quant_block(self, cell_core, activation, fake_quant_a_out):
- """convet network's quant subcell to deploy subcell"""
- # Calculate the scale and zero point
- w_minq_name = cell_core.fake_quant_weight.minq.name
- np_type = mstype.dtype_to_nptype(self.data_type)
- param_dict = dict()
- param_dict["filter_maxq"] = None
- param_dict["filter_minq"] = None
- param_dict["output_maxq"] = None
- param_dict["output_minq"] = None
- param_dict["input_maxq"] = None
- param_dict["input_minq"] = None
- param_dict["mean"] = self.mean
- param_dict["std_dev"] = self.std_dev
- param_dict["symmetric"] = fake_quant_a_out.symmetric
- if self.is_mindir:
- scale_w, zp_w, param_dict["filter_maxq"], param_dict["filter_minq"] = \
- quant_utils.scale_zp_max_min_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
- scale_a_out, _, param_dict["output_maxq"], param_dict["output_minq"] = \
- quant_utils.scale_zp_max_min_from_fake_quant_cell(fake_quant_a_out, np_type)
- else:
- scale_w, zp_w = quant_utils.scale_zp_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
- scale_a_out, _ = quant_utils.scale_zp_from_fake_quant_cell(fake_quant_a_out, np_type)
- info = self.quant_info_table.get(w_minq_name, None)
- if info:
- fack_quant_a_in_op, minq_name = info
- if minq_name == 'input':
- scale_a_in, zp_a_in = self.input_scale, self.input_zero_point
- else:
- maxq = self.all_parameters[minq_name[:-4] + "maxq"]
- minq = self.all_parameters[minq_name]
- if self.is_mindir:
- scale_a_in, zp_a_in, param_dict["input_maxq"], param_dict["input_minq"] = \
- quant_utils.scale_zp_max_min_from_data(fack_quant_a_in_op, minq, maxq, np_type)
- else:
- scale_a_in, zp_a_in = quant_utils.scale_zp_from_data(fack_quant_a_in_op, minq, maxq, np_type)
- else:
- logger.warning(f"Do not find `fake_quant` from input with `fake_quant.minq` {w_minq_name}")
- return None
-
- # Build the `Quant` `Dequant` op.
- # Quant only support perlayer version. Need check here.
- quant_op = inner.Quant(1 / float(scale_a_in), float(zp_a_in))
- scale_deq = scale_a_out * scale_w
- dequant_op = inner.Dequant()
-
- if isinstance(activation, _AddFakeQuantAfterSubCell):
- activation = activation.subcell
- elif hasattr(activation, "get_origin"):
- activation = activation.get_origin()
-
- # get the `weight` and `bias`
- weight = cell_core.weight.data.asnumpy()
- bias = None
- if isinstance(cell_core, (quant.DenseQuant, quant.Conv2dQuant)):
- if cell_core.has_bias:
- bias = cell_core.bias.data.asnumpy()
- elif isinstance(cell_core, quant.Conv2dBnFoldQuant):
- weight, bias = quant_utils.fold_batchnorm(weight, cell_core)
- elif isinstance(cell_core, quant.Conv2dBnWithoutFoldQuant):
- weight, bias = quant_utils.without_fold_batchnorm(weight, cell_core)
- weight_b = weight
- bias_b = bias
- # apply the quant
- weight = quant_utils.weight2int(weight, scale_w, zp_w)
- if bias is not None:
- bias = Tensor(bias / scale_a_in / scale_w, mstype.int32)
-
- # fuse parameter
- # |--------|47:40|--------|39:32|--------|31:0|
- # offset_w [8] shift_N [8] deq_scale [32]
- float32_deq_scale = scale_deq.astype(np.float32)
- uint32_deq_scale = np.frombuffer(float32_deq_scale, np.uint32)
- scale_length = scale_deq.size # channel
- dequant_param = np.zeros(scale_length, dtype=np.uint64)
- for index in range(scale_length):
- dequant_param[index] += uint32_deq_scale[index]
-
- scale_deq = Tensor(dequant_param, mstype.uint64)
- # get op
- if isinstance(cell_core, quant.DenseQuant):
- op_core = P.MatMul()
- weight = np.transpose(weight)
- weight_b = np.transpose(weight_b)
- else:
- op_core = cell_core.conv
- weight = Tensor(weight, self.data_type)
- weight_b = Tensor(weight_b)
- if bias_b is not None:
- bias_b = Tensor(bias_b, mstype.float32)
- if self.is_mindir:
- block = quant.QuantMindirBlock(op_core, weight_b, bias_b, activation, param_dict)
- else:
- block = quant.QuantBlock(op_core, weight, quant_op, dequant_op, scale_deq, bias, activation)
- return block
-
- def _convert_quant2deploy(self, network):
- """Convert network's all quant subcell to deploy subcell."""
- cells = network.name_cells()
- change = False
- for name in cells:
- subcell = cells[name]
- if subcell == network:
- continue
- cell_core = None
- fake_quant_act = None
- activation = None
- if isinstance(subcell, quant.Conv2dBnAct):
- cell_core = subcell.conv
- activation = subcell.activation
- fake_quant_act = activation.fake_quant_act
- elif isinstance(subcell, quant.DenseBnAct):
- cell_core = subcell.dense
- activation = subcell.activation
- fake_quant_act = activation.fake_quant_act
- if cell_core is not None:
- new_subcell = self._get_quant_block(cell_core, activation, fake_quant_act)
- if new_subcell:
- prefix = subcell.param_prefix
- new_subcell.update_parameters_name(prefix + '.')
- network.insert_child_to_cell(name, new_subcell)
- change = True
- elif isinstance(subcell, _AddFakeQuantAfterSubCell):
- op = subcell.subcell
- if op.name in ConvertToQuantNetwork.__quant_op_name__ and isinstance(op, ops.Primitive):
- network.__delattr__(name)
- network.__setattr__(name, op)
- change = True
- else:
- self._convert_quant2deploy(subcell)
- if isinstance(network, nn.SequentialCell) and change:
- network.cell_list = list(network.cells())
- return network
-
-
- def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='AIR'):
- """
- Exports MindSpore quantization predict model to deploy with AIR.
-
- Args:
- network (Cell): MindSpore network produced by `convert_quant_network`.
- inputs (Tensor): Inputs of the `quantization aware training network`.
- file_name (str): File name of model to export.
- mean (int): Input data mean. Default: 127.5.
- std_dev (int, float): Input data variance. Default: 127.5.
- file_format (str): MindSpore currently supports 'AIR', 'ONNX' and 'MINDIR' format for exported
- quantization aware model. Default: 'AIR'.
-
- - AIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
- Ascend model.
- - MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
- for MindSpore models.
- Recommended suffix for output file is '.mindir'.
- """
- supported_device = ["Ascend", "GPU"]
- supported_formats = ['AIR', 'MINDIR']
-
- mean = validator.check_type("mean", mean, (int, float))
- std_dev = validator.check_type("std_dev", std_dev, (int, float))
-
- if context.get_context('device_target') not in supported_device:
- raise KeyError("Unsupported {} device target.".format(context.get_context('device_target')))
-
- if file_format not in supported_formats:
- raise ValueError('Illegal file format {}.'.format(file_format))
-
- network.set_train(False)
- if file_format == "MINDIR":
- exporter = ExportToQuantInferNetwork(network, mean, std_dev, *inputs, is_mindir=True)
- else:
- exporter = ExportToQuantInferNetwork(network, mean, std_dev, *inputs)
- deploy_net = exporter.run()
- serialization.export(deploy_net, *inputs, file_name=file_name, file_format=file_format)
-
-
- def convert_quant_network(network,
- bn_fold=True,
- freeze_bn=10000000,
- quant_delay=(0, 0),
- num_bits=(8, 8),
- per_channel=(False, False),
- symmetric=(False, False),
- narrow_range=(False, False)
- ):
- r"""
- Create quantization aware training network.
-
- Args:
- network (Cell): Obtain a pipeline through network for saving graph summary.
- bn_fold (bool): Flag to used bn fold ops for simulation inference operation. Default: True.
- freeze_bn (int): Number of steps after which BatchNorm OP parameters used total mean and variance. Default: 1e7.
- quant_delay (int, list or tuple): Number of steps after which weights and activations are quantized during
- eval. The first element represent weights and second element represent data flow. Default: (0, 0)
- num_bits (int, list or tuple): Number of bits to use for quantize weights and activations. The first
- element represent weights and second element represent data flow. Default: (8, 8)
- per_channel (bool, list or tuple): Quantization granularity based on layer or on channel. If `True`
- then base on per channel otherwise base on per layer. The first element represent weights
- and second element represent data flow. Default: (False, False)
- symmetric (bool, list or tuple): Whether the quantization algorithm is symmetric or not. If `True` then base on
- symmetric otherwise base on asymmetric. The first element represent weights and second
- element represent data flow. Default: (False, False)
- narrow_range (bool, list or tuple): Whether the quantization algorithm uses narrow range or not.
- The first element represents weights and the second element represents data flow. Default: (False, False)
-
- Returns:
- Cell, Network which has change to quantization aware training network cell.
- """
- support_device = ["Ascend", "GPU"]
-
- def convert2list(name, value):
- if not isinstance(value, list) and not isinstance(value, tuple):
- value = [value]
- elif len(value) > 2:
- raise ValueError("input `{}` len should less then 2".format(name))
- return value
-
- quant_delay = convert2list("quant delay", quant_delay)
- num_bits = convert2list("num bits", num_bits)
- per_channel = convert2list("per channel", per_channel)
- symmetric = convert2list("symmetric", symmetric)
- narrow_range = convert2list("narrow range", narrow_range)
-
- if context.get_context('device_target') not in support_device:
- raise KeyError("Unsupported {} device target.".format(context.get_context('device_target')))
-
- net = ConvertToQuantNetwork(network=network,
- quant_delay=quant_delay,
- bn_fold=bn_fold,
- freeze_bn=freeze_bn,
- num_bits=num_bits,
- per_channel=per_channel,
- symmetric=symmetric,
- narrow_range=narrow_range)
- return net.run()
|