|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test implicit conversion """
- import numpy as np
-
- from mindspore import Tensor
-
-
- def test_float_tensor_and_int_add():
- x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
- y = 2
- ret_actual = x + y
- ret_expect = Tensor(np.array([[2.1, 2.2, 2.3], [2.4, 2.5, 2.6]], dtype=np.float32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_bool_tensor_and_float_add():
- x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_))
- y = 3.3
- ret_actual = x + y
- ret_expect = Tensor(np.array([[4.3, 3.3], [3.3, 4.3]], dtype=np.float32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_bool_tensor_and_int_add():
- x = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_))
- y = 3
- ret_actual = x + y
- ret_expect = Tensor(np.array([[4, 3], [3, 4]], dtype=np.int32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_bool_and_int_tensor_add():
- x = True
- y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
- ret_actual = x + y
- ret_expect = Tensor(np.array([[2, 3, 4], [5, 6, 7]], dtype=np.int32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
- def test_float_tensor_and_int_tensor_add():
- x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
- y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
- ret_actual = x + y
- ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_float_tensor_and_float_tensor_add():
- x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float64))
- y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32))
- ret_actual = x + y
- ret_expect = Tensor(np.array([[1.1, 2.2, 3.3], [4.4, 5.5, 6.6]], dtype=np.float64))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_int_tensor_and_int_tensor_add():
- x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int16))
- y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
- ret_actual = x + y
- ret_expect = Tensor(np.array([[2, 4, 6], [8, 10, 12]], dtype=np.int32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
-
-
- def test_float_tensor_and_bool_tensors_add():
- x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
- y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_))
- ret_actual = x + y
- ret_expect = Tensor(np.array([[1.1, 1.2, 1.3], [0.4, 0.5, 0.6]], dtype=np.float32))
- assert (ret_actual.asnumpy() == ret_expect.asnumpy()).all()
|