|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
- from mindspore.ops.operations import _inner_ops as inner
-
- class MatMulNet(nn.Cell):
- def __init__(self):
- super(MatMulNet, self).__init__()
- self.matmul = P.MatMul()
-
- def construct(self, x, y):
- return self.matmul(x, y)
-
-
- class MatMul_d(nn.Cell):
- def __init__(self):
- super(MatMul_d, self).__init__()
- self.test_dynamic = inner.GpuConvertToDynamicShape()
- self.matmul = P.MatMul()
-
- def construct(self, x, y):
- x = self.test_dynamic(x)
- y = self.test_dynamic(y)
- return self.matmul(x, y)
-
-
- class MatMulComposite(nn.Cell):
- def __init__(self):
- super(MatMulComposite, self).__init__()
- self.matmul = C.matmul
-
- def construct(self, x, y):
- return self.matmul(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_MatMul_dynamic():
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = MatMul_d()
-
- x1 = np.arange(2).reshape(1, 2).astype(np.float32)
- y1 = np.arange(4).reshape(2, 2).astype(np.float32)
- output1 = net(Tensor(x1), Tensor(y1))
- expect1 = np.matmul(x1, y1)
- np.testing.assert_array_almost_equal(output1.asnumpy(), expect1)
-
- x2 = np.arange(102).reshape(34, 3).astype(np.float32)
- y2 = np.arange(18).reshape(3, 6).astype(np.float32)
- output2 = net(Tensor(x2), Tensor(y2))
- expect2 = np.matmul(x2, y2)
- np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_matmul_float64():
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = MatMulNet()
-
- x = np.arange(102).reshape(34, 3).astype(np.float64)
- y = np.arange(18).reshape(3, 6).astype(np.float64)
- output = net(Tensor(x), Tensor(y))
- expect = np.matmul(x, y)
- np.testing.assert_array_almost_equal(output.asnumpy(), expect)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_matmul_composite():
-
- context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
- net = MatMulComposite()
-
- scalars = [np.random.randn(1).astype(np.float32), np.random.randn(1).astype(np.float32),
- np.random.randn(1, 1).astype(np.float32),
- np.random.randn(1, 1, 1).astype(np.float32)]
- for x in scalars:
- for y in scalars:
- output = net(Tensor(x), Tensor(y))
- expect = np.matmul(x, y)
- np.testing.assert_array_almost_equal(output.asnumpy(), expect)
-
- broadcastables = [
- np.random.randn(3).astype(np.float32), np.random.randn(3).astype(np.float32),
- np.random.randn(6).astype(np.float32), np.random.randn(6, 4).astype(np.float32),
- np.random.randn(5, 2).astype(np.float32), np.random.randn(2).astype(np.float32),
- np.random.randn(2, 9).astype(np.float32), np.random.randn(9, 8).astype(np.float32),
- np.random.randn(6).astype(np.float32), np.random.randn(2, 6, 5).astype(np.float32),
- np.random.randn(9, 2, 7).astype(np.float32), np.random.randn(7).astype(np.float32),
- np.random.randn(5, 2, 4).astype(np.float32), np.random.randn(6, 1, 4, 9).astype(np.float32),
- np.random.randn(7, 1, 5, 3, 2).astype(np.float32), np.random.randn(8, 1, 6, 1, 2, 9).astype(np.float32)
- ]
- for i in range(8):
- x = broadcastables[2*i]
- y = broadcastables[2*i + 1]
- output = net(Tensor(x), Tensor(y))
- expect = np.matmul(x, y)
- np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|