|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class Net(nn.Cell):
- def __init__(self):
- super(Net, self).__init__()
- self.ops = P.Less()
-
- def construct(self, x, y):
- return self.ops(x, y)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu_training
- @pytest.mark.env_onecard
- def test_net():
- x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
- y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
- x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
- y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
- x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32)
- y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
- x3_np = np.random.randint(1, 5, 1).astype(np.float32)
- y3_np = np.random.randint(1, 5, 1).astype(np.float32)
- x4_np = np.array(768).astype(np.float32)
- y4_np = np.array(3072.5).astype(np.float32)
-
- x0 = Tensor(x0_np)
- y0 = Tensor(y0_np)
- x1 = Tensor(x1_np)
- y1 = Tensor(y1_np)
- x2 = Tensor(x2_np)
- y2 = Tensor(y2_np)
- x3 = Tensor(x3_np)
- y3 = Tensor(y3_np)
- x4 = Tensor(x4_np)
- y4 = Tensor(y4_np)
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
- net = Net()
- out = net(x0, y0).asnumpy()
- expect = x0_np < y0_np
- assert np.all(out == expect)
- assert out.shape == expect.shape
-
- out = net(x1, y1).asnumpy()
- expect = x1_np < y1_np
- assert np.all(out == expect)
- assert out.shape == expect.shape
-
- out = net(x2, y2).asnumpy()
- expect = x2_np < y2_np
- assert np.all(out == expect)
- assert out.shape == expect.shape
-
- out = net(x3, y3).asnumpy()
- expect = x3_np < y3_np
- assert np.all(out == expect)
- assert out.shape == expect.shape
-
- out = net(x4, y4).asnumpy()
- expect = x4_np < y4_np
- assert np.all(out == expect)
- assert out.shape == expect.shape
|