|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
- context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
-
-
- axis0 = 0
- axis1 = 1
- axis2 = 2
- axis3 = 3
- axis4 = 4
- axis5 = -1
- axis6 = -2
-
- x0 = np.random.rand(3, 3, 4, 5, 3).astype(np.float32)
- x1 = np.random.rand(2, 3, 4, 5, 3).astype(np.float16)
- x2 = np.random.randint(-10000, 10000, size=(2, 3, 4, 5, 3)).astype(np.int32)
- x3 = np.random.randint(-5, 5, size=(2, 3, 4, 5, 3)).astype(np.int8)
- x4 = np.random.randint(0, 10, size=(2, 3, 4, 5, 3)).astype(np.uint8)
- x5 = np.random.rand(3).astype(np.float32)
-
- list1 = [x0, x1, x2, x3, x4]
- list2 = [axis0, axis1, axis2, axis3, axis4, axis5, axis6]
-
- class CumSum(nn.Cell):
- def __init__(self, exclusive=False, reverse=False):
- super(CumSum, self).__init__()
- self.cumsum_op = P.CumSum(exclusive, reverse)
-
- self.x0 = Tensor(x0)
- self.axis0 = axis0
- self.x1 = Tensor(x0)
- self.axis1 = axis1
- self.x2 = Tensor(x0)
- self.axis2 = axis2
- self.x3 = Tensor(x0)
- self.axis3 = axis3
- self.x4 = Tensor(x0)
- self.axis4 = axis4
- self.x5 = Tensor(x0)
- self.axis5 = axis5
- self.x6 = Tensor(x0)
- self.axis6 = axis6
-
- self.x7 = Tensor(x1)
- self.axis7 = axis0
- self.x8 = Tensor(x1)
- self.axis8 = axis1
- self.x9 = Tensor(x1)
- self.axis9 = axis2
- self.x10 = Tensor(x1)
- self.axis10 = axis3
- self.x11 = Tensor(x1)
- self.axis11 = axis4
- self.x12 = Tensor(x1)
- self.axis12 = axis5
- self.x13 = Tensor(x1)
- self.axis13 = axis6
-
- self.x14 = Tensor(x2)
- self.axis14 = axis0
- self.x15 = Tensor(x2)
- self.axis15 = axis1
- self.x16 = Tensor(x2)
- self.axis16 = axis2
- self.x17 = Tensor(x2)
- self.axis17 = axis3
- self.x18 = Tensor(x2)
- self.axis18 = axis4
- self.x19 = Tensor(x2)
- self.axis19 = axis5
- self.x20 = Tensor(x2)
- self.axis20 = axis6
-
- self.x21 = Tensor(x3)
- self.axis21 = axis0
- self.x22 = Tensor(x3)
- self.axis22 = axis1
- self.x23 = Tensor(x3)
- self.axis23 = axis2
- self.x24 = Tensor(x3)
- self.axis24 = axis3
- self.x25 = Tensor(x3)
- self.axis25 = axis4
- self.x26 = Tensor(x3)
- self.axis26 = axis5
- self.x27 = Tensor(x3)
- self.axis27 = axis6
-
- self.x28 = Tensor(x4)
- self.axis28 = axis0
- self.x29 = Tensor(x4)
- self.axis29 = axis1
- self.x30 = Tensor(x4)
- self.axis30 = axis2
- self.x31 = Tensor(x4)
- self.axis31 = axis3
- self.x32 = Tensor(x4)
- self.axis32 = axis4
- self.x33 = Tensor(x4)
- self.axis33 = axis5
- self.x34 = Tensor(x4)
- self.axis34 = axis6
-
- self.x35 = Tensor(x5)
- self.axis35 = axis0
-
- def construct(self):
- return (self.cumsum_op(self.x0, self.axis0),
- self.cumsum_op(self.x1, self.axis1),
- self.cumsum_op(self.x2, self.axis2),
- self.cumsum_op(self.x3, self.axis3),
- self.cumsum_op(self.x4, self.axis4),
- self.cumsum_op(self.x5, self.axis5),
- self.cumsum_op(self.x6, self.axis6),
- self.cumsum_op(self.x7, self.axis7),
- self.cumsum_op(self.x8, self.axis8),
- self.cumsum_op(self.x9, self.axis9),
- self.cumsum_op(self.x10, self.axis10),
- self.cumsum_op(self.x11, self.axis11),
- self.cumsum_op(self.x12, self.axis12),
- self.cumsum_op(self.x13, self.axis13),
- self.cumsum_op(self.x14, self.axis14),
- self.cumsum_op(self.x15, self.axis15),
- self.cumsum_op(self.x16, self.axis16),
- self.cumsum_op(self.x17, self.axis17),
- self.cumsum_op(self.x18, self.axis18),
- self.cumsum_op(self.x19, self.axis19),
- self.cumsum_op(self.x20, self.axis20),
- self.cumsum_op(self.x21, self.axis21),
- self.cumsum_op(self.x22, self.axis22),
- self.cumsum_op(self.x23, self.axis23),
- self.cumsum_op(self.x24, self.axis24),
- self.cumsum_op(self.x25, self.axis25),
- self.cumsum_op(self.x26, self.axis26),
- self.cumsum_op(self.x27, self.axis27),
- self.cumsum_op(self.x28, self.axis28),
- self.cumsum_op(self.x29, self.axis29),
- self.cumsum_op(self.x30, self.axis30),
- self.cumsum_op(self.x31, self.axis31),
- self.cumsum_op(self.x32, self.axis32),
- self.cumsum_op(self.x33, self.axis33),
- self.cumsum_op(self.x34, self.axis34),
- self.cumsum_op(self.x35, self.axis35))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_cumsum():
- cumsum = CumSum()
- output = cumsum()
-
- k = 0
-
- for i in list1:
- for j in list2:
- expect = np.cumsum(i, axis=j)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
- k += 1
-
- expect = np.cumsum(x5, axis=axis0)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
-
-
- def test_cumsum2():
- cumsum = CumSum(exclusive=False, reverse=True)
- output = cumsum()
-
- k = 0
-
- for i in list1:
- for j in list2:
- result1 = np.flip(i, axis=j)
- result2 = np.cumsum(result1, axis=j)
- expect = np.flip(result2, axis=j)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
- k += 1
-
- result1 = np.flip(x5, axis=axis0)
- result2 = np.cumsum(result1, axis=axis0)
- expect = np.flip(result2, axis=axis0)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
-
-
- def test_cumsum3():
- cumsum = CumSum(exclusive=True, reverse=False)
- output = cumsum()
-
- k = 0
-
- for i in list1:
- for j in list2:
- result1 = np.insert(i, 0, [0], axis=j)
- result2 = np.delete(result1, -1, axis=j)
- expect = np.cumsum(result2, axis=j)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
- k += 1
-
- result1 = np.insert(x5, 0, [0], axis=axis0)
- result2 = np.delete(result1, -1, axis=axis0)
- expect = np.cumsum(result2, axis=axis0)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
-
-
- def test_cumsum4():
- cumsum = CumSum(exclusive=True, reverse=True)
- output = cumsum()
-
- k = 0
-
- for i in list1:
- for j in list2:
- result1 = np.flip(i, axis=j)
- result2 = np.insert(result1, 0, [0], axis=j)
- result3 = np.delete(result2, -1, axis=j)
- result4 = np.cumsum(result3, axis=j)
- expect = np.flip(result4, axis=j)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
- k += 1
-
- result1 = np.flip(x5, axis=axis0)
- result2 = np.insert(result1, 0, [0], axis=axis0)
- result3 = np.delete(result2, -1, axis=axis0)
- result4 = np.cumsum(result3, axis=axis0)
- expect = np.flip(result4, axis=axis0)
- diff = abs(output[k].asnumpy() - expect)
- error = np.ones(shape=expect.shape) * 1.0e-5
- assert np.all(diff < error)
- assert output[k].shape == expect.shape
|