|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import pytest
- import numpy as np
- from mindspore import Tensor
- from mindspore.ops import operations as P
- import mindspore.nn as nn
- import mindspore.context as context
-
- context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
-
- class ConcatV10(nn.Cell):
- def __init__(self, nptype):
- super(ConcatV10, self).__init__()
-
- self.cat = P.Concat(axis=2)
- self.x1 = Tensor(np.array([[[0., 0., 1.],
- [1., 2., 3.]],
- [[2., 4., 5.],
- [3., 6., 7.]]]).astype(nptype))
-
- def construct(self):
- return self.cat((self.x1,))
-
-
- def axis10(nptype):
- cat = ConcatV10(nptype)
- output = cat()
- expect = np.array([[[0., 0., 1.],
- [1., 2., 3.]],
- [[2., 4., 5.],
- [3., 6., 7.]]]).astype(nptype)
- print(output)
- assert (output.asnumpy() == expect).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis10_float32():
- axis10(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis10_int32():
- axis10(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis10_bool():
- axis10(np.bool)
-
- class ConcatV32(nn.Cell):
- def __init__(self, nptype):
- super(ConcatV32, self).__init__()
-
- self.cat = P.Concat(axis=2)
- self.x1 = Tensor(np.arange(2 * 2 * 1).reshape(2, 2, 1).astype(nptype))
- self.x2 = Tensor(np.arange(2 * 2 * 2).reshape(2, 2, 2).astype(nptype))
-
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- def axis32(nptype):
- cat = ConcatV32(nptype)
- output = cat()
- expect = np.array([[[0., 0., 1.],
- [1., 2., 3.]],
- [[2., 4., 5.],
- [3., 6., 7.]]]).astype(nptype)
- print(output)
- assert (output.asnumpy() == expect).all()
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis32_float32():
- axis32(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis32_int32():
- axis32(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis32_bool():
- axis32(np.bool)
-
-
- class ConcatV43(nn.Cell):
- def __init__(self, nptype):
- super(ConcatV43, self).__init__()
-
- self.cat = P.Concat(axis=3)
- self.x1 = Tensor(np.arange(2 * 2 * 2 * 2).reshape(2, 2, 2, 2).astype(nptype))
- self.x2 = Tensor(np.arange(2 * 2 * 2 * 3).reshape(2, 2, 2, 3).astype(nptype))
-
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- def axis43(nptype):
- cat = ConcatV43(nptype)
- output = cat()
- expect = np.array([[[[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]],
- [[4., 5., 6., 7., 8.],
- [6., 7., 9., 10., 11.]]],
- [[[8., 9., 12., 13., 14.],
- [10., 11., 15., 16., 17.]],
- [[12., 13., 18., 19., 20.],
- [14., 15., 21., 22., 23.]]]]).astype(nptype)
- assert (output.asnumpy() == expect).all()
- print(output)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis43_float32():
- axis43(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis43_int32():
- axis43(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis43_bool():
- axis43(np.bool)
-
-
- class ConcatV21(nn.Cell):
- def __init__(self, nptype):
- super(ConcatV21, self).__init__()
-
- self.cat = P.Concat(axis=1)
- self.x1 = Tensor(np.arange(2 * 2).reshape(2, 2).astype(nptype))
- self.x2 = Tensor(np.arange(2 * 3).reshape(2, 3).astype(nptype))
-
- def construct(self):
- return self.cat((self.x1, self.x2))
-
-
- def axis21(nptype):
- cat = ConcatV21(nptype)
- output = cat()
- expect = np.array([[0., 1., 0., 1., 2.],
- [2., 3., 3., 4., 5.]]).astype(nptype)
- assert (output.asnumpy() == expect).all()
- print(output)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis21_float32():
- axis21(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis21_int32():
- axis21(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_axis21_bool():
- axis21(np.bool)
-
-
- class Concat3INet(nn.Cell):
- def __init__(self):
- super(Concat3INet, self).__init__()
- self.cat = P.Concat(axis=1)
-
- def construct(self, x1, x2, x3):
- return self.cat((x1, x2, x3))
-
-
- def concat_3i(nptype):
- cat = Concat3INet()
-
- x1_np = np.random.randn(32, 4, 224, 224).astype(nptype)
- x2_np = np.random.randn(32, 8, 224, 224).astype(nptype)
- x3_np = np.random.randn(32, 10, 224, 224).astype(nptype)
- output_np = np.concatenate((x1_np, x2_np, x3_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_3i_float32():
- concat_3i(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_3i_int32():
- concat_3i(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_3i_bool():
- cat = Concat3INet()
-
- x1_np = np.random.choice([True, False], (32, 4, 224, 224)).astype(np.bool)
- x2_np = np.random.choice([True, False], (32, 8, 224, 224)).astype(np.bool)
- x3_np = np.random.choice([True, False], (32, 10, 224, 224)).astype(np.bool)
- output_np = np.concatenate((x1_np, x2_np, x3_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms)
-
- assert (output_ms.asnumpy() == output_np).all()
-
-
- class Concat4INet(nn.Cell):
- def __init__(self):
- super(Concat4INet, self).__init__()
- self.cat = P.Concat(axis=1)
-
- def construct(self, x1, x2, x3, x4):
- return self.cat((x1, x2, x3, x4))
-
-
- def concat_4i(nptype):
- cat = Concat4INet()
-
- x1_np = np.random.randn(32, 4, 224, 224).astype(nptype)
- x2_np = np.random.randn(32, 8, 224, 224).astype(nptype)
- x3_np = np.random.randn(32, 10, 224, 224).astype(nptype)
- x4_np = np.random.randn(32, 5, 224, 224).astype(nptype)
- output_np = np.concatenate((x1_np, x2_np, x3_np, x4_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- x4_ms = Tensor(x4_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms, x4_ms)
-
- error = np.ones(shape=output_np.shape) * 10e-6
- diff = output_ms.asnumpy() - output_np
- assert np.all(diff < error)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_4i_float32():
- concat_4i(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_4i_int32():
- concat_4i(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_4i_int8():
- concat_4i(np.int8)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_4i_uint64():
- concat_4i(np.uint64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_cpu
- @pytest.mark.env_onecard
- def test_concat_4i_bool():
- cat = Concat4INet()
-
- x1_np = np.random.choice([True, False], (32, 4, 224, 224)).astype(np.bool)
- x2_np = np.random.choice([True, False], (32, 8, 224, 224)).astype(np.bool)
- x3_np = np.random.choice([True, False], (32, 10, 224, 224)).astype(np.bool)
- x4_np = np.random.choice([True, False], (32, 5, 224, 224)).astype(np.bool)
- output_np = np.concatenate((x1_np, x2_np, x3_np, x4_np), axis=1)
-
- x1_ms = Tensor(x1_np)
- x2_ms = Tensor(x2_np)
- x3_ms = Tensor(x3_np)
- x4_ms = Tensor(x4_np)
- output_ms = cat(x1_ms, x2_ms, x3_ms, x4_ms)
-
- assert (output_ms.asnumpy() == output_np).all()
|