|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Train centerface and get network model files(.ckpt)
- """
-
- import os
- import time
- import argparse
- import datetime
- import numpy as np
-
- from mindspore import context
- from mindspore.context import ParallelMode
- from mindspore.nn.optim.adam import Adam
- from mindspore.nn.optim.momentum import Momentum
- from mindspore.nn.optim.sgd import SGD
- from mindspore import Tensor
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.callback import ModelCheckpoint, RunContext
- from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.profiler.profiling import Profiler
- from mindspore.common import set_seed
-
- from src.utils import get_logger
- from src.utils import AverageMeter
- from src.lr_scheduler import warmup_step_lr
- from src.lr_scheduler import warmup_cosine_annealing_lr, \
- warmup_cosine_annealing_lr_v2, warmup_cosine_annealing_lr_sample
- from src.lr_scheduler import MultiStepLR
- from src.var_init import default_recurisive_init
- from src.centerface import CenterfaceMobilev2
- from src.utils import load_backbone, get_param_groups
- from src.config import ConfigCenterface
- from src.centerface import CenterFaceWithLossCell, TrainingWrapper
- from src.dataset import GetDataLoader
-
- set_seed(1)
- dev_id = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=False,
- device_target="Ascend", save_graphs=False, device_id=dev_id, reserve_class_name_in_scope=False)
-
- parser = argparse.ArgumentParser('mindspore coco training')
-
- # dataset related
- parser.add_argument('--data_dir', type=str, default='', help='train data dir')
- parser.add_argument('--annot_path', type=str, default='', help='train data annotation path')
- parser.add_argument('--img_dir', type=str, default='', help='train data img dir')
- parser.add_argument('--per_batch_size', default=8, type=int, help='batch size for per gpu')
-
- # network related
- parser.add_argument('--pretrained_backbone', default='', type=str, help='model_path, local pretrained backbone'
- ' model to load')
- parser.add_argument('--resume', default='', type=str, help='path of pretrained centerface_model')
-
- # optimizer and lr related
- parser.add_argument('--lr_scheduler', default='multistep', type=str,
- help='lr-scheduler, option type: exponential, cosine_annealing')
- parser.add_argument('--lr', default=4e-3, type=float, help='learning rate of the training')
- parser.add_argument('--lr_epochs', type=str, default='90,120', help='epoch of lr changing')
- parser.add_argument('--lr_gamma', type=float, default=0.1,
- help='decrease lr by a factor of exponential lr_scheduler')
- parser.add_argument('--eta_min', type=float, default=0., help='eta_min in cosine_annealing scheduler')
- parser.add_argument('--t_max', type=int, default=140, help='T-max in cosine_annealing scheduler')
- parser.add_argument('--max_epoch', type=int, default=140, help='max epoch num to train the model')
- parser.add_argument('--warmup_epochs', default=0, type=float, help='warmup epoch')
- parser.add_argument('--weight_decay', type=float, default=0.0005, help='weight decay')
- parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
- parser.add_argument('--optimizer', default='adam', type=str,
- help='optimizer type, default: adam')
-
- # loss related
- parser.add_argument('--loss_scale', type=int, default=1024, help='static loss scale')
- parser.add_argument('--label_smooth', type=int, default=0, help='whether to use label smooth in CE')
- parser.add_argument('--label_smooth_factor', type=float, default=0.1, help='smooth strength of original one-hot')
-
- # logging related
- parser.add_argument('--log_interval', type=int, default=100, help='logging interval')
- parser.add_argument('--ckpt_path', type=str, default='outputs/', help='checkpoint save location')
- parser.add_argument('--ckpt_interval', type=int, default=None, help='ckpt_interval')
-
- parser.add_argument('--is_save_on_master', type=int, default=1, help='save ckpt on master or all rank')
-
- # distributed related
- parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
- parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
- parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
-
- # roma obs
- parser.add_argument('--train_url', type=str, default="", help='train url')
-
- # profiler init, can open when you debug. if train, donot open, since it cost memory and disk space
- parser.add_argument('--need_profiler', type=int, default=0, help='whether use profiler')
-
- # reset default config
- parser.add_argument('--training_shape', type=str, default="", help='fix training shape')
- parser.add_argument('--resize_rate', type=int, default=None, help='resize rate for multi-scale training')
-
- args, _ = parser.parse_known_args()
-
- if args.lr_scheduler == 'cosine_annealing' and args.max_epoch > args.t_max:
- args.t_max = args.max_epoch
-
- args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
-
-
- def convert_training_shape(args_):
- """
- Convert training shape
- """
- training_shape = [int(args_.training_shape), int(args_.training_shape)]
- return training_shape
-
-
- if __name__ == "__main__":
- # init distributed
- if args.is_distributed:
- init()
- args.rank = get_rank()
- args.group_size = get_group_size()
-
- # select for master rank save ckpt or all rank save, compatible for model parallel
- args.rank_save_ckpt_flag = 0
- if args.is_save_on_master:
- if args.rank == 0:
- args.rank_save_ckpt_flag = 1
- else:
- args.rank_save_ckpt_flag = 1
-
- # logger
- args.outputs_dir = os.path.join(args.ckpt_path,
- datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
- args.logger = get_logger(args.outputs_dir, args.rank)
- args.logger.save_args(args)
-
- if args.need_profiler:
- profiler = Profiler(output_path=args.outputs_dir)
-
- loss_meter = AverageMeter('loss')
-
- context.reset_auto_parallel_context()
- if args.is_distributed:
- parallel_mode = ParallelMode.DATA_PARALLEL
- degree = get_group_size()
- else:
- parallel_mode = ParallelMode.STAND_ALONE
- degree = 1
-
- # context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=degree, parameter_broadcast=True, gradients_mean=True)
- # Notice: parameter_broadcast should be supported, but current version has bugs, thus been disabled.
- # To make sure the init weight on all npu is the same, we need to set a static seed in default_recurisive_init when weight initialization
- context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=degree)
- network = CenterfaceMobilev2()
- # init, to avoid overflow, some std of weight should be enough small
- default_recurisive_init(network)
-
- if args.pretrained_backbone:
- network = load_backbone(network, args.pretrained_backbone, args)
- args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone))
- else:
- args.logger.info('Not load pre-trained backbone, please be careful')
-
- if os.path.isfile(args.resume):
- param_dict = load_checkpoint(args.resume)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.') or key.startswith('moment1.') or key.startswith('moment2.'):
- continue
- elif key.startswith('centerface_network.'):
- param_dict_new[key[19:]] = values
- else:
- param_dict_new[key] = values
-
- load_param_into_net(network, param_dict_new)
- args.logger.info('load_model {} success'.format(args.resume))
- else:
- args.logger.info('{} not set/exists or not a pre-trained file'.format(args.resume))
-
- network = CenterFaceWithLossCell(network)
- args.logger.info('finish get network')
-
- config = ConfigCenterface()
- config.data_dir = args.data_dir
- config.annot_path = args.annot_path
- config.img_dir = args.img_dir
-
- config.label_smooth = args.label_smooth
- config.label_smooth_factor = args.label_smooth_factor
- # -------------reset config-----------------
- if args.training_shape:
- config.multi_scale = [convert_training_shape(args)]
-
- if args.resize_rate:
- config.resize_rate = args.resize_rate
-
- # data loader
- data_loader, args.steps_per_epoch = GetDataLoader(per_batch_size=args.per_batch_size,
- max_epoch=args.max_epoch,
- rank=args.rank,
- group_size=args.group_size,
- config=config,
- split='train')
- args.steps_per_epoch = args.steps_per_epoch // args.max_epoch
- args.logger.info('Finish loading dataset')
-
- if not args.ckpt_interval:
- args.ckpt_interval = args.steps_per_epoch
-
- # lr scheduler
- if args.lr_scheduler == 'multistep':
- lr_fun = MultiStepLR(args.lr, args.lr_epochs, args.lr_gamma, args.steps_per_epoch, args.max_epoch,
- args.warmup_epochs)
- lr = lr_fun.get_lr()
- elif args.lr_scheduler == 'exponential':
- lr = warmup_step_lr(args.lr,
- args.lr_epochs,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- gamma=args.lr_gamma
- )
- elif args.lr_scheduler == 'cosine_annealing':
- lr = warmup_cosine_annealing_lr(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.t_max,
- args.eta_min)
- elif args.lr_scheduler == 'cosine_annealing_V2':
- lr = warmup_cosine_annealing_lr_v2(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.t_max,
- args.eta_min)
- elif args.lr_scheduler == 'cosine_annealing_sample':
- lr = warmup_cosine_annealing_lr_sample(args.lr,
- args.steps_per_epoch,
- args.warmup_epochs,
- args.max_epoch,
- args.t_max,
- args.eta_min)
- else:
- raise NotImplementedError(args.lr_scheduler)
-
- if args.optimizer == "adam":
- opt = Adam(params=get_param_groups(network),
- learning_rate=Tensor(lr),
- weight_decay=args.weight_decay,
- loss_scale=args.loss_scale)
- args.logger.info("use adam optimizer")
- elif args.optimizer == "sgd":
- opt = SGD(params=get_param_groups(network),
- learning_rate=Tensor(lr),
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- loss_scale=args.loss_scale)
- else:
- opt = Momentum(params=get_param_groups(network),
- learning_rate=Tensor(lr),
- momentum=args.momentum,
- weight_decay=args.weight_decay,
- loss_scale=args.loss_scale)
-
- network = TrainingWrapper(network, opt, sens=args.loss_scale)
- network.set_train()
-
- if args.rank_save_ckpt_flag:
- # checkpoint save
- ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
- ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
- keep_checkpoint_max=ckpt_max_num)
- ckpt_cb = ModelCheckpoint(config=ckpt_config,
- directory=args.outputs_dir,
- prefix='{}'.format(args.rank))
- cb_params = _InternalCallbackParam()
- cb_params.train_network = network
- cb_params.epoch_num = ckpt_max_num
- cb_params.cur_epoch_num = 1
- run_context = RunContext(cb_params)
- ckpt_cb.begin(run_context)
-
- args.logger.info('args.steps_per_epoch = {} args.ckpt_interval ={}'.format(args.steps_per_epoch,
- args.ckpt_interval))
-
- t_end = time.time()
-
- for i_all, batch_load in enumerate(data_loader):
- i = i_all % args.steps_per_epoch
- epoch = i_all // args.steps_per_epoch + 1
- images, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks = batch_load
-
- images = Tensor(images)
- hm = Tensor(hm)
- reg_mask = Tensor(reg_mask)
- ind = Tensor(ind)
- wh = Tensor(wh)
- wight_mask = Tensor(wight_mask)
- hm_offset = Tensor(hm_offset)
- hps_mask = Tensor(hps_mask)
- landmarks = Tensor(landmarks)
-
- loss, overflow, scaling = network(images, hm, reg_mask, ind, wh, wight_mask, hm_offset, hps_mask, landmarks)
- # Tensor to numpy
- overflow = np.all(overflow.asnumpy())
- loss = loss.asnumpy()
- loss_meter.update(loss)
- args.logger.info('epoch:{}, iter:{}, avg_loss:{}, loss:{}, overflow:{}, loss_scale:{}'.format(epoch,
- i,
- loss_meter,
- loss,
- overflow,
- scaling.asnumpy()
- ))
-
- if args.rank_save_ckpt_flag:
- # ckpt progress
- cb_params.cur_epoch_num = epoch
- cb_params.cur_step_num = i + 1 + (epoch-1)*args.steps_per_epoch
- cb_params.batch_num = i + 2 + (epoch-1)*args.steps_per_epoch
- ckpt_cb.step_end(run_context)
-
- if (i_all+1) % args.steps_per_epoch == 0:
- time_used = time.time() - t_end
- fps = args.per_batch_size * args.steps_per_epoch * args.group_size / time_used
- if args.rank == 0:
- args.logger.info(
- 'epoch[{}], {}, {:.2f} imgs/sec, lr:{}'
- .format(epoch, loss_meter, fps, lr[i + (epoch-1)*args.steps_per_epoch])
- )
- t_end = time.time()
- loss_meter.reset()
-
- if args.need_profiler:
- profiler.analyse()
-
- args.logger.info('==========end training===============')
|