|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
-
- import mindspore
- import mindspore.nn as nn
- from mindspore import context
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.common.python_pass_register import registe_pass, PyPassManager
- from mindspore.common.api import _generate_pip_args
- from mindspore._c_expression import generate_key, Executor_
-
- context.set_context(mode=context.GRAPH_MODE)
-
- def get_func_graph(obj, *args, phase="predict"):
- args_names, args_list = _generate_pip_args(obj, *args)
- dic = dict(zip(args_names, args_list))
- key = generate_key(phase, dic)
- phase_prefix = str(key[1])
- if phase == 'export':
- phase = phase + '.' + phase_prefix + '.' + str(obj.create_time)
- else:
- phase = phase_prefix + phase + '.' + str(obj.create_time)
- _executor = Executor_.get_instance()
- _executor.compile(obj, args_list, phase, False)
- return _executor.get_func_graph(phase)
-
- def test_softmax_relu():
- """
- Use python pass to transform from Softmax to ReLU.
- """
- inputs = Tensor(np.ones([42]), mindspore.float16)
- softmax_model = nn.Softmax()
-
- @registe_pass(run_only_once=True)
- def softmax_relu_pass():
- softmax = P.Softmax()
- relu = P.ReLU()
- def pattern(x):
- x = softmax(x)
- return x
- def target(x):
- x = relu(x)
- return x
- return pattern, target
-
- transformed_repr = get_func_graph(softmax_model, inputs).get_return().expanded_str(2)
- ppm = PyPassManager()
- ppm.unregiste(softmax_relu_pass)
- assert "ReLU" in transformed_repr
- assert "Softmax" not in transformed_repr
|