|
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- from mindspore.common.api import ms_function
- from mindspore.common.initializer import initializer
- from mindspore.common.parameter import Parameter
- from mindspore.common.tensor import Tensor
- from mindspore.nn import Cell
- from mindspore.ops.operations import Tile
-
-
- class TileNet(Cell):
- def __init__(self, numpy_input):
- super(TileNet, self).__init__()
- self.Tile = Tile()
-
- self.input_parameter = Parameter(initializer(Tensor(numpy_input), numpy_input.shape), name='x')
-
- @ms_function
- def construct(self, mul):
- return self.Tile(self.input_parameter, mul)
-
-
- def ms_tile(nptype):
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
- input_0 = np.arange(2).reshape((2, 1, 1)).astype(nptype)
- mul_0 = (8, 1, 1)
- input_1 = np.arange(32).reshape((2, 4, 4)).astype(nptype)
- mul_1 = (2, 2, 2)
- input_2 = np.arange(1).reshape((1, 1, 1)).astype(nptype)
- mul_2 = (1, 1, 1)
-
- tile_net = TileNet(input_0)
- np_expected = np.tile(input_0, mul_0)
- ms_output = tile_net(mul_0).asnumpy()
- np.testing.assert_array_equal(ms_output, np_expected)
-
- tile_net = TileNet(input_1)
- np_expected = np.tile(input_1, mul_1)
- ms_output = tile_net(mul_1).asnumpy()
- np.testing.assert_array_equal(ms_output, np_expected)
-
- tile_net = TileNet(input_2)
- np_expected = np.tile(input_2, mul_2)
- ms_output = tile_net(mul_2).asnumpy()
- np.testing.assert_array_equal(ms_output, np_expected)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_float16():
- ms_tile(np.float16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_float32():
- ms_tile(np.float32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_float64():
- ms_tile(np.float64)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_int16():
- ms_tile(np.int16)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_int32():
- ms_tile(np.int32)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_tile_int64():
- ms_tile(np.int64)
|