|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- import mindspore.common.dtype as mstype
- from mindspore.common.initializer import Normal
- from mindspore import Tensor
- from mindspore import context
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv2d_depthwiseconv2d_str():
- net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
- input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
- output = net(input_data)
- assert output.shape == (3, 128, 32, 28)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv2d_depthwiseconv2d_initializer():
- net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
- input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
- output = net(input_data)
- assert output.shape == (3, 128, 32, 28)
-
-
- @pytest.mark.level1
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv2d_depthwiseconv2d_tensor():
- weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
- net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
- input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
- output = net(input_data)
- assert output.shape == (3, 128, 32, 28)
|