|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """thor_ops"""
- from mindspore.ops import prim_attr_register, PrimitiveWithInfer
- from mindspore.ops.composite import multitype_ops as C
-
- import mindspore as ms
-
- __all__ = ["CusBatchMatMul",
- "CusCholeskyTrsm",
- "CusFusedAbsMax1",
- "CusImg2Col",
- "CusMatMulCubeDenseLeft",
- "CusMatMulCubeFraczRightMul",
- "CusMatMulCube",
- "CusMatrixCombine",
- "CusTranspose02314",
- "CusMatMulCubeDenseRight",
- "CusMatMulCubeFraczLeftCast",
- ]
-
-
- class CusBatchMatMul(PrimitiveWithInfer):
- """CusBatchMatMul definition"""
- """
- Multiplies matrix `a` by matrix `b` in batch.
-
- The rank of input tensors must be `3`.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, D, D)`. If
- - **input_y** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(N, D, D)`. If
- `transpose_b` is True.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, D, D)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32)
- >>> input_y = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32)
- >>> cus_batch_matmul = P.CusBatchMatMul()
- >>> output = cus_batch_matmul(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusBatchMatMul"""
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.batch_matmul_impl import CusBatchMatMul
- def get_bprop(self):
- def bprop(x1, x2, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape):
- return data1_shape
-
- def infer_dtype(self, data1_dtype, data2_dtype):
- return data1_dtype
-
-
- class CusCholeskyTrsm(PrimitiveWithInfer):
- """CusCholeskyTrsm definition"""
- """
- L * LT = A.
- LT * (LT)^-1 = I.
- return (LT)^-1.
- Only compute the res of the diag part of input matrix with dim 128.
- The rank of input tensors must be `2`.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, N)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N // Split_dim, Split_dim, Split_dim)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float32)
- >>> cus_choleskytrsm = P.CusCholeskyTrsm()
- >>> output = matmul(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusCholeskyTrsm"""
- self.init_prim_io_names(inputs=['x1'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.cholesky_trsm_impl import CusCholeskyTrsm
- def infer_shape(self, data1_shape):
- ll = []
- m, _ = data1_shape
- if m >= 128:
- ll = [m // 128, 128, 128]
- else:
- ll = [1, 64, 64]
- return ll
-
- def infer_dtype(self, data1_dtype):
- return data1_dtype
-
-
- class CusFusedAbsMax1(PrimitiveWithInfer):
- """CusFusedAbsMax1 definition"""
- """
- Compute the abs max of Tensor input.
-
- The rank of input tensors must be `4` or `2`.
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N0, M0, N1, M1)`
- or math:`(32, 64)`.
- Outputs:
- Tensor, the shape of the output tensor is :math:`(32, 64)` or math:`(1, )`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32)
- >>> cus_fused_abs_max1 = P.CusFusedAbsMax1()
- >>> output = cus_fused_abs_max1(input_x)
- """
-
- @prim_attr_register
- def __init__(self, origin_shape=[-1, -1]):
- """init CusFusedAbsMax1"""
- self.init_prim_io_names(inputs=['x1'], outputs=['y'])
- self.origin_shape = origin_shape
- from mindspore.ops._op_impl._custom_op.fused_abs_max1_impl import CusFusedAbsMax1
- def get_bprop(self):
- def bprop(x, out, dout):
- return (C.zeros_like(x),)
-
- return bprop
-
- def infer_shape(self, data1_shape):
- ll = []
- if len(data1_shape) == 2:
- ll = [1,]
- else:
- ll = [32, 64]
- return ll
-
- def infer_dtype(self, data1_dtype):
- return data1_dtype
-
-
- class CusImg2Col(PrimitiveWithInfer):
- """CusImg2Col definition"""
- """
- Img2col the feature map and the result in reorganized in NC1HWC0.
-
- Args:
- - **strides** (listInt) - the stride of the ops.
- - **ksizes** (listInt) - the kernel size of the ops.
- Inputs:
- - **input_x** (Tensor) - The shape of the tensor is :math:`(N, C, H, W)`.
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N * H_O * W_O, C1 * K_W * K_H * C0)`.
- Examples:
- >>> input_x = Tensor(np.ones(shape=[32, 3, 224, 224]), mindspore.float16)
- >>> cusimg2col = P.CusImg2Col()
- >>> output = cusimg2col(input_x)
- """
-
- @prim_attr_register
- def __init__(self, ksizes, strides, dilates=(1, 1, 1, 1), mode="NC1HWC0"):
- """init CusImg2Col"""
- self.init_prim_io_names(inputs=['x1'], outputs=['y'])
- self.ksizes = ksizes
- self.strides = strides
- self.dilates = dilates
- self.mode = mode
- from mindspore.ops._op_impl._custom_op.img2col_impl import CusImg2Col
- def get_bprop(self):
- def bprop(x, out, dout):
- return (C.zeros_like(x),)
-
- return bprop
-
- def infer_shape(self, data1_shape):
- bs, c, h, w = data1_shape
- _, stride_h, stride_w, _ = self.strides
- _, k_w, k_h, _ = self.ksizes
- # assert m == n
- c0 = 16
- c1 = c // 16
- if c1 == 0:
- c1 = 1
- shape = [bs * int(h // stride_h) * int(w // stride_w), k_w * k_h * c1 * c0]
- return shape
-
- def infer_dtype(self, data1_dtype):
- return data1_dtype
-
-
- class CusMatMulCubeDenseLeft(PrimitiveWithInfer):
- """CusMatMulCube definition"""
- """
- Multiplies matrix `a` by matrix `b`.
-
- The rank of input_x1 must be `4`, the fractal format of the normal matrix.
- The rank of input_x2 must be `2`.
-
- Inputs:
- - **input_x1** (Tensor) - The first tensor to be multiplied.
- The shape of the tensor is :math:`(N0, M0, N1, M1)`.
- - **input_x2** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(M, C)`.
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, C)`.
- Examples:
- >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16)
- >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> matmulcubedenseleft = P.CusMatMulCubeDenseLeft()
- >>> output = matmulcubedenseleft(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusMatMulCubeDenseLeft"""
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.matmul_cube_dense_left_impl import CusMatMulCubeDenseLeft
- def get_bprop(self):
- def bprop(x1, x2, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape):
- return data2_shape
-
- def infer_dtype(self, data1_dtype, data2_dtype):
- return ms.common.dtype.tensor_type(getattr(ms, "float16"))
-
-
- class CusMatMulCubeFraczRightMul(PrimitiveWithInfer):
- """CusMatMulCubeFraczRightMul definition"""
- """
- Multiplies matrix `a` by matrix `b` and muls the result by scalar `c`.
-
- The rank of input_x1 tensors must be `2`.
- The rank of input_x2 tensors must be `4`.
-
- Inputs:
- - **input_x1** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, C)`.
- - **input_x2** (Tensor) - The second tensor to be multiplied.
- The shape of the tensor is :math:`(C1, M1, C0, M0)`.
- - **input_x3** (Tensor) - The third tensor to be multiplied. The shape of the tensor if :math`(1, )`.
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, M)`.
- Examples:
- >>> input_x1 = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> input_x2 = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16)
- >>> input_x3 = Tensor(np.ones(shape=[1, ]), mindspore.float16)
- >>> cusmatmulfraczrightmul = P.CusMatMulCubeFraczRightMul()
- >>> output = cusmatmulfraczrightmul(input_x1, input_x2, input_x3)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusMatMulCubeFraczRightMul"""
- self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.matmul_cube_fracz_right_mul_impl import CusMatMulCubeFraczRightMul
- def get_bprop(self):
- def bprop(x1, x2, x3, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape, data3_shape):
- return data1_shape
-
- def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
- return ms.common.dtype.tensor_type(getattr(ms, "float32"))
-
-
- class CusMatMulCube(PrimitiveWithInfer):
- """CusMatMulCube definition"""
- """
- Multiplies matrix `a` by matrix `b`.
-
- The rank of input tensors must be `2`.
-
- Args:
- transpose_a (bool): If True, `a` is transposed before multiplication. Default: False.
- transpose_b (bool): If True, `b` is transposed before multiplication. Default: False.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, C)`. If
- `transpose_a` is True, its shape should be :math:`(N, C)` after transposing.
- - **input_y** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(C, M)`. If
- `transpose_b` is True, its shape should be :math:`(C, M)` after transpose.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, M)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> cusmatmulcube = P.CusMatMulCube()
- >>> output = matmul(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self, transpose_a=False, transpose_b=False):
- """init CusMatMulCube"""
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
- self.transpose_a = transpose_a
- self.transpose_b = transpose_b
- from mindspore.ops._op_impl._custom_op.matmul_cube_impl import CusMatMulCube
- def get_bprop(self):
- def bprop(x1, x2, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape):
- # shape = [1, data1_shape[1], data2_shape[2], 16, 16]
- # return shape
- if self.transpose_a:
- k1, m = data1_shape
- else:
- m, k1 = data1_shape
- if self.transpose_b:
- n, k2 = data2_shape
- else:
- k2, n = data2_shape
- assert k1 == k2
- shape = [m, n]
- return shape
-
- def infer_dtype(self, data1_dtype, data2_dtype):
- return ms.common.dtype.tensor_type(getattr(ms, "float32"))
-
-
- class CusMatrixCombine(PrimitiveWithInfer):
- """CusMatrixCombine definition"""
- """
- move the batch matrix to result matrix diag part.
- The rank of input tensors must be `3`.
-
- Inputs:
- - **input_x** (Tensor) - The shape of the tensor is :math:`(N, D, D)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N * D, N * D)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[2, 128, 128]), mindspore.float32)
- >>> cusmatrixcombine = P.CusMatrixCombine()
- >>> output = cusmatrixcombine(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusMatrixCombine"""
- self.init_prim_io_names(inputs=['x'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.matrix_combine_impl import CusMatrixCombine
- def get_bprop(self):
- def bprop(x, out, dout):
- return (C.zeros_like(x),)
-
- return bprop
-
- def infer_shape(self, data_shape):
- a, b, c = data_shape
- shape = [a * b, a * c]
-
- return shape
-
- def infer_dtype(self, data_dtype):
- return data_dtype
-
-
- class CusTranspose02314(PrimitiveWithInfer):
- """CusTranspose02314 definition"""
- """
- Permute input tensor with perm (0, 2, 3, 1, 4)
-
- The rank of input tensors must be `5` with format NC1HWC0.
-
- Inputs:
- - **input_x** (Tensor) - The shape of the tensor is :math:`(N, C1, H, W, C0)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, H, W, C1, C0)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[32, 1, 224, 224, 16]), mindspore.float16)
- >>> custranspose02314 = P.CusTranspose02314()
- >>> output = custranspose02314(input_x)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusTranspose02314"""
- self.init_prim_io_names(inputs=['x1'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.transpose02314_impl import CusTranspose02314
- def get_bprop(self):
- def bprop(x, out, dout):
- return (C.zeros_like(x),)
-
- return bprop
-
- def infer_shape(self, data1_shape):
- assert len(data1_shape) == 4
- n, c, h, w = data1_shape
- c0 = 16
- c1 = c // 16
- shape = (n * h * w, c1 * c0)
- return shape
-
- def infer_dtype(self, data1_dtype):
- return data1_dtype
-
-
- class CusMatMulCubeDenseRight(PrimitiveWithInfer):
- """CusMatMulCubeDenseRight definition"""
- """
- Multiplies matrix `a` by matrix `b`.
-
- The rank of input_x1 tensor must be `2`.
- The rank of input_x2 tensor must be `4`.
-
- Inputs:
- - **input_x** (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(N, C)`.
- - **input_y** (Tensor) - The second tensor to be multiplied.
- The shape of the tensor is :math:`(C1, M1, M0, C0)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, M)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> input_y = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16)
- >>> cusmatmulcubedenseright = P.CusMatMulCubeDenseRight()
- >>> output = cusmatmulcubedenseright(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusMatMulCubeDenseRight"""
- self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.matmul_cube_dense_right_impl import CusMatMulCubeDenseRight
- def get_bprop(self):
- def bprop(x1, x2, x3, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape, data3_shape):
- return data1_shape
-
- def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
- return ms.common.dtype.tensor_type(getattr(ms, "float32"))
-
-
- class CusMatMulCubeFraczLeftCast(PrimitiveWithInfer):
- """CusMatMulCubeFraczLeftCast definition"""
- """
- Multiplies matrix `a` by matrix `b`.
-
- The rank of input_x1 tensor must be `4`.
- The rank of input_x2 tensors must be `2`.
-
- Inputs:
- - **input_x1** (Tensor) - The first tensor to be multiplied.
- The shape of the tensor is :math:`(C1, N1, N0, C0)`.
- - **input_x2** (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(C, M)`.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, M)`.
-
- Examples:
- >>> input_x = Tensor(np.ones(shape=[16, 16, 16, 16]), mindspore.float16)
- >>> input_y = Tensor(np.ones(shape=[256, 256]), mindspore.float16)
- >>> cusmatmulcubefraczleftcast = P.CusMatMulCubeFraczLeftCast()
- >>> output = cusmatmulcubefraczleftcast(input_x, input_y)
- """
-
- @prim_attr_register
- def __init__(self):
- """init CusMatMulCubeFraczLeftCast"""
- self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
- from mindspore.ops._op_impl._custom_op.matmul_cube_fracz_left_cast_impl import CusMatMulCubeFraczLeftCast
- def get_bprop(self):
- def bprop(x1, x2, out, dout):
- return (C.zeros_like(x1), C.zeros_like(x2))
-
- return bprop
-
- def infer_shape(self, data1_shape, data2_shape):
- return data2_shape
-
- def infer_dtype(self, data1_dtype, data2_dtype):
- return ms.common.dtype.tensor_type(getattr(ms, "float16"))
|