|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """model evaluation script"""
- import os
- import argparse
- import numpy as np
-
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore import Tensor
- from mindspore.train import Model
- from mindspore.nn.metrics import Accuracy
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.train.callback import LossMonitor
- from mindspore.common import set_seed
-
- from src.config import textrcnn_cfg as cfg
- from src.dataset import create_dataset
- from src.textrcnn import textrcnn
-
- set_seed(1)
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='textrcnn')
- parser.add_argument('--ckpt_path', type=str)
- args = parser.parse_args()
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target="Ascend")
-
- device_id = int(os.getenv('DEVICE_ID'))
- context.set_context(device_id=device_id)
-
- embedding_table = np.loadtxt(os.path.join(cfg.preprocess_path, "weight.txt")).astype(np.float32)
- network = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0],
- cell=cfg.cell, batch_size=cfg.batch_size)
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
- loss_cb = LossMonitor()
- print("============== Starting Testing ==============")
- ds_eval = create_dataset(cfg.preprocess_path, cfg.batch_size, False)
- param_dict = load_checkpoint(args.ckpt_path)
- load_param_into_net(network, param_dict)
- network.set_train(False)
- model = Model(network, loss, metrics={'acc': Accuracy()}, amp_level='O3')
- acc = model.eval(ds_eval, dataset_sink_mode=False)
- print("============== Accuracy:{} ==============".format(acc))
|