|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_imagenet."""
- import os
- import sys
- import argparse
- import random
- import math
- import numpy as np
- from test_dataset import create_dataset
- from config import config
- from mindspore import context
- from mindspore.nn.dynamic_lr import piecewise_constant_lr, warmup_lr
- import mindspore.dataset.engine as de
- from mindspore.train.serialization import load_checkpoint
- from model.model import resnet50, TrainStepWrap, NetWithLossClass
- from utils.distance import compute_dist, compute_score
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
- parser.add_argument('--train_url', type=str, default=None, help='Train output path')
- args_opt = parser.parse_args()
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
-
- local_data_url = 'data'
- local_train_url = 'ckpt'
-
-
- class Logger():
- '''Log'''
- def __init__(self, logFile="log_max.txt"):
- self.terminal = sys.stdout
- self.log = open(logFile, 'a')
-
- def write(self, message):
- self.terminal.write(message)
- self.log.write(message)
- self.log.flush()
-
- def flush(self):
- pass
-
- sys.stdout = Logger("log/log.txt")
-
-
- if __name__ == '__main__':
- query_dataset = create_dataset(data_dir=os.path.join('/home/dingfeifei/datasets', \
- 'test/query'), p=config.p, k=config.k)
- gallery_dataset = create_dataset(data_dir=os.path.join('/home/dingfeifei/datasets', \
- 'test/gallery'), p=config.p, k=config.k)
-
- epoch_size = config.epoch_size
- net = resnet50(class_num=config.class_num, is_train=False)
- loss_net = NetWithLossClass(net, is_train=False)
-
- base_lr = config.learning_rate
- warm_up_epochs = config.lr_warmup_epochs
- lr_decay_epochs = config.lr_decay_epochs
- lr_decay_factor = config.lr_decay_factor
- step_size = math.ceil(config.class_num / config.p)
- lr_decay_steps = []
- lr_decay = []
- for i, v in enumerate(lr_decay_epochs):
- lr_decay_steps.append(v * step_size)
- lr_decay.append(base_lr * lr_decay_factor ** i)
- lr_1 = warmup_lr(base_lr, step_size*warm_up_epochs, step_size, warm_up_epochs)
- lr_2 = piecewise_constant_lr(lr_decay_steps, lr_decay)
- lr = lr_1 + lr_2
-
- train_net = TrainStepWrap(loss_net, lr, config.momentum, is_train=False)
-
- load_checkpoint("checkpoints/40.ckpt", net=train_net)
-
- q_feats, q_labels, g_feats, g_labels = [], [], [], []
- for data, gt_classes, theta in query_dataset:
- output = train_net(data, gt_classes, theta)
- output = output.asnumpy()
- label = gt_classes.asnumpy()
- q_feats.append(output)
- q_labels.append(label)
- q_feats = np.vstack(q_feats)
- q_labels = np.hstack(q_labels)
-
- for data, gt_classes, theta in gallery_dataset:
- output = train_net(data, gt_classes, theta)
- output = output.asnumpy()
- label = gt_classes.asnumpy()
- g_feats.append(output)
- g_labels.append(label)
- g_feats = np.vstack(g_feats)
- g_labels = np.hstack(g_labels)
-
- q_g_dist = compute_dist(q_feats, g_feats, dis_type='cosine')
- mAP, cmc_scores = compute_score(q_g_dist, q_labels, g_labels)
-
- print(mAP, cmc_scores)
|